Cálculo Exemplos

Resolve a equação diferencial (4x^3y^3-2xy)dx+(3x^4y^2-x^2)dy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Multiplique por .
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Avalie .
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.3
Multiplique por .
Etapa 2.5
Reordene os termos.
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
Como os dois lados demonstraram ser equivalentes, a equação é uma identidade.
é uma identidade.
é uma identidade.
Etapa 4
A integral de é .
Etapa 5
Integre para encontrar .
Toque para ver mais passagens...
Etapa 5.1
Divida a integral única em várias integrais.
Etapa 5.2
Como é constante com relação a , mova para fora da integral.
Etapa 5.3
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.4
Como é constante com relação a , mova para fora da integral.
Etapa 5.5
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.6
Simplifique.
Etapa 5.7
Simplifique.
Toque para ver mais passagens...
Etapa 5.7.1
Combine e .
Etapa 5.7.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 5.7.2.1
Cancele o fator comum.
Etapa 5.7.2.2
Reescreva a expressão.
Etapa 5.7.3
Multiplique por .
Etapa 5.7.4
Combine e .
Etapa 5.7.5
Combine e .
Etapa 5.7.6
Combine e .
Etapa 5.7.7
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 5.7.7.1
Fatore de .
Etapa 5.7.7.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 5.7.7.2.1
Fatore de .
Etapa 5.7.7.2.2
Cancele o fator comum.
Etapa 5.7.7.2.3
Reescreva a expressão.
Etapa 5.7.7.2.4
Divida por .
Etapa 6
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 7
Defina .
Etapa 8
Encontre .
Toque para ver mais passagens...
Etapa 8.1
Diferencie em relação a .
Etapa 8.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.3
Avalie .
Toque para ver mais passagens...
Etapa 8.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.3
Mova para a esquerda de .
Etapa 8.4
Avalie .
Toque para ver mais passagens...
Etapa 8.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.4.3
Multiplique por .
Etapa 8.5
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 8.6
Reordene os termos.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 9.1.1
Some aos dois lados da equação.
Etapa 9.1.2
Subtraia dos dois lados da equação.
Etapa 9.1.3
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 9.1.3.1
Some e .
Etapa 9.1.3.2
Some e .
Etapa 9.1.3.3
Subtraia de .
Etapa 10
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 10.1
Integre ambos os lados de .
Etapa 10.2
Avalie .
Etapa 10.3
A integral de com relação a é .
Etapa 10.4
Some e .
Etapa 11
Substitua por em .
Etapa 12
Reescreva usando a propriedade comutativa da multiplicação.