Cálculo Exemplos

Resolve a equação diferencial (cos(2y)-3x^2y^2)dx+(cos(2y)-2xsin(2y)-2x^3y)dy=0
Etapa 1
Encontre em .
Toque para ver mais passagens...
Etapa 1.1
Diferencie em relação a .
Etapa 1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.3.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.1.2
A derivada de em relação a é .
Etapa 1.3.1.3
Substitua todas as ocorrências de por .
Etapa 1.3.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.4
Multiplique por .
Etapa 1.3.5
Multiplique por .
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Multiplique por .
Etapa 1.5
Reordene os termos.
Etapa 2
Encontre em .
Toque para ver mais passagens...
Etapa 2.1
Diferencie em relação a .
Etapa 2.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Avalie .
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.3
Multiplique por .
Etapa 2.5
Simplifique.
Toque para ver mais passagens...
Etapa 2.5.1
Subtraia de .
Etapa 2.5.2
Reordene os termos.
Etapa 3
Verifique se .
Toque para ver mais passagens...
Etapa 3.1
Substitua por e por .
Etapa 3.2
Como os dois lados demonstraram ser equivalentes, a equação é uma identidade.
é uma identidade.
é uma identidade.
Etapa 4
A integral de é .
Etapa 5
Integre para encontrar .
Toque para ver mais passagens...
Etapa 5.1
Divida a integral única em várias integrais.
Etapa 5.2
Aplique a regra da constante.
Etapa 5.3
Como é constante com relação a , mova para fora da integral.
Etapa 5.4
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 5.5
Simplifique.
Etapa 5.6
Simplifique.
Toque para ver mais passagens...
Etapa 5.6.1
Combine e .
Etapa 5.6.2
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 5.6.2.1
Fatore de .
Etapa 5.6.2.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 5.6.2.2.1
Fatore de .
Etapa 5.6.2.2.2
Cancele o fator comum.
Etapa 5.6.2.2.3
Reescreva a expressão.
Etapa 5.6.2.2.4
Divida por .
Etapa 6
Como a integral de conterá uma constante de integração, podemos substituir por .
Etapa 7
Defina .
Etapa 8
Encontre .
Toque para ver mais passagens...
Etapa 8.1
Diferencie em relação a .
Etapa 8.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.3
Avalie .
Toque para ver mais passagens...
Etapa 8.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 8.3.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 8.3.2.2
A derivada de em relação a é .
Etapa 8.3.2.3
Substitua todas as ocorrências de por .
Etapa 8.3.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.3.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.3.5
Multiplique por .
Etapa 8.3.6
Multiplique por .
Etapa 8.4
Avalie .
Toque para ver mais passagens...
Etapa 8.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.4.3
Multiplique por .
Etapa 8.5
Diferencie usando a regra da função que afirma que a derivada de é .
Etapa 8.6
Reordene os termos.
Etapa 9
Resolva .
Toque para ver mais passagens...
Etapa 9.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 9.1.1
Some aos dois lados da equação.
Etapa 9.1.2
Some aos dois lados da equação.
Etapa 9.1.3
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 9.1.3.1
Some e .
Etapa 9.1.3.2
Some e .
Etapa 9.1.3.3
Some e .
Etapa 9.1.3.4
Some e .
Etapa 10
Encontre a antiderivada de para encontrar .
Toque para ver mais passagens...
Etapa 10.1
Integre ambos os lados de .
Etapa 10.2
Avalie .
Etapa 10.3
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 10.3.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 10.3.1.1
Diferencie .
Etapa 10.3.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 10.3.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 10.3.1.4
Multiplique por .
Etapa 10.3.2
Reescreva o problema usando e .
Etapa 10.4
Combine e .
Etapa 10.5
Como é constante com relação a , mova para fora da integral.
Etapa 10.6
A integral de com relação a é .
Etapa 10.7
Simplifique.
Etapa 10.8
Substitua todas as ocorrências de por .
Etapa 11
Substitua por em .
Etapa 12
Simplifique .
Toque para ver mais passagens...
Etapa 12.1
Combine e .
Etapa 12.2
Reordene os fatores em .