Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Avalie o limite do numerador e o limite do denominador.
Etapa 1.1.1
Obtenha o limite do numerador e o limite do denominador.
Etapa 1.1.2
Avalie o limite do numerador.
Etapa 1.1.2.1
Avalie o limite.
Etapa 1.1.2.1.1
Mova o limite para baixo do sinal do radical.
Etapa 1.1.2.1.2
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.2.1.3
Mova o expoente de para fora do limite usando a regra da multiplicação de potências.
Etapa 1.1.2.1.4
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.2.2
Avalie o limite de substituindo por .
Etapa 1.1.2.3
Simplifique a resposta.
Etapa 1.1.2.3.1
Eleve à potência de .
Etapa 1.1.2.3.2
Multiplique por .
Etapa 1.1.2.3.3
Subtraia de .
Etapa 1.1.2.3.4
Reescreva como .
Etapa 1.1.2.3.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 1.1.3
Avalie o limite do denominador.
Etapa 1.1.3.1
Avalie o limite.
Etapa 1.1.3.1.1
Divida o limite usando a regra da soma dos limites no limite em que se aproxima de .
Etapa 1.1.3.1.2
Avalie o limite de , que é constante à medida que se aproxima de .
Etapa 1.1.3.2
Avalie o limite de substituindo por .
Etapa 1.1.3.3
Simplifique a resposta.
Etapa 1.1.3.3.1
Multiplique por .
Etapa 1.1.3.3.2
Subtraia de .
Etapa 1.1.3.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.3.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.1.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 1.2
Como tem forma indeterminada, aplique a regra de l'Hôpital. De acordo com a regra de l'Hôpital, o limite de um quociente de funções é igual ao limite do quociente de suas derivadas.
Etapa 1.3
Encontre a derivada do numerador e do denominador.
Etapa 1.3.1
Diferencie o numerador e o denominador.
Etapa 1.3.2
Use para reescrever como .
Etapa 1.3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3.3
Substitua todas as ocorrências de por .
Etapa 1.3.4
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3.5
Combine e .
Etapa 1.3.6
Combine os numeradores em relação ao denominador comum.
Etapa 1.3.7
Simplifique o numerador.
Etapa 1.3.7.1
Multiplique por .
Etapa 1.3.7.2
Subtraia de .
Etapa 1.3.8
Mova o número negativo para a frente da fração.
Etapa 1.3.9
Combine e .
Etapa 1.3.10
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.3.11
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.12
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.13
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.14
Some e .
Etapa 1.3.15
Combine e .
Etapa 1.3.16
Combine e .
Etapa 1.3.17
Cancele o fator comum.
Etapa 1.3.18
Reescreva a expressão.
Etapa 1.3.19
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.3.20
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.21
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.22
Some e .
Etapa 1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.5
Reescreva como .
Etapa 1.6
Multiplique por .
Etapa 2
Como o numerador é positivo e o denominador se aproxima de zero e é maior do que zero para próximo a à direita, a função aumenta sem limite.