Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Etapa 4.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 4.1.1
Fatore a fração.
Etapa 4.1.1.1
Reescreva como .
Etapa 4.1.1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 4.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.3
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.4
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 4.1.5
Cancele o fator comum de .
Etapa 4.1.5.1
Cancele o fator comum.
Etapa 4.1.5.2
Reescreva a expressão.
Etapa 4.1.6
Cancele o fator comum de .
Etapa 4.1.6.1
Cancele o fator comum.
Etapa 4.1.6.2
Reescreva a expressão.
Etapa 4.1.7
Simplifique cada termo.
Etapa 4.1.7.1
Cancele o fator comum de .
Etapa 4.1.7.1.1
Cancele o fator comum.
Etapa 4.1.7.1.2
Divida por .
Etapa 4.1.7.2
Aplique a propriedade distributiva.
Etapa 4.1.7.3
Mova para a esquerda de .
Etapa 4.1.7.4
Reescreva como .
Etapa 4.1.7.5
Cancele o fator comum de .
Etapa 4.1.7.5.1
Cancele o fator comum.
Etapa 4.1.7.5.2
Divida por .
Etapa 4.1.7.6
Aplique a propriedade distributiva.
Etapa 4.1.7.7
Multiplique por .
Etapa 4.1.8
Mova .
Etapa 4.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 4.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 4.3
Resolva o sistema de equações.
Etapa 4.3.1
Resolva em .
Etapa 4.3.1.1
Reescreva a equação como .
Etapa 4.3.1.2
Subtraia dos dois lados da equação.
Etapa 4.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 4.3.2.1
Substitua todas as ocorrências de em por .
Etapa 4.3.2.2
Simplifique o lado direito.
Etapa 4.3.2.2.1
Simplifique .
Etapa 4.3.2.2.1.1
Multiplique .
Etapa 4.3.2.2.1.1.1
Multiplique por .
Etapa 4.3.2.2.1.1.2
Multiplique por .
Etapa 4.3.2.2.1.2
Some e .
Etapa 4.3.3
Resolva em .
Etapa 4.3.3.1
Reescreva a equação como .
Etapa 4.3.3.2
Divida cada termo em por e simplifique.
Etapa 4.3.3.2.1
Divida cada termo em por .
Etapa 4.3.3.2.2
Simplifique o lado esquerdo.
Etapa 4.3.3.2.2.1
Cancele o fator comum de .
Etapa 4.3.3.2.2.1.1
Cancele o fator comum.
Etapa 4.3.3.2.2.1.2
Divida por .
Etapa 4.3.4
Substitua todas as ocorrências de por em cada equação.
Etapa 4.3.4.1
Substitua todas as ocorrências de em por .
Etapa 4.3.4.2
Simplifique o lado direito.
Etapa 4.3.4.2.1
Multiplique por .
Etapa 4.3.5
Liste todas as soluções.
Etapa 4.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 4.5
Simplifique.
Etapa 4.5.1
Multiplique o numerador pelo inverso do denominador.
Etapa 4.5.2
Multiplique por .
Etapa 4.5.3
Mova para a esquerda de .
Etapa 4.5.4
Multiplique o numerador pelo inverso do denominador.
Etapa 4.5.5
Multiplique por .
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
Como é constante com relação a , mova para fora da integral.
Etapa 8
Etapa 8.1
Deixe . Encontre .
Etapa 8.1.1
Diferencie .
Etapa 8.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 8.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 8.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 8.1.5
Some e .
Etapa 8.2
Reescreva o problema usando e .
Etapa 9
A integral de com relação a é .
Etapa 10
Como é constante com relação a , mova para fora da integral.
Etapa 11
Etapa 11.1
Deixe . Encontre .
Etapa 11.1.1
Diferencie .
Etapa 11.1.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 11.1.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 11.1.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 11.1.5
Some e .
Etapa 11.2
Reescreva o problema usando e .
Etapa 12
A integral de com relação a é .
Etapa 13
Simplifique.
Etapa 14
Etapa 14.1
Substitua todas as ocorrências de por .
Etapa 14.2
Substitua todas as ocorrências de por .
Etapa 15
A resposta é a primitiva da função .