Insira um problema...
Matemática básica Exemplos
Etapa 1
Combine e .
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Etapa 2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O fator de é o próprio .
ocorre vez.
Etapa 2.8
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.9
Multiplique por .
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Cancele o fator comum de .
Etapa 3.2.1.1
Fatore de .
Etapa 3.2.1.2
Cancele o fator comum.
Etapa 3.2.1.3
Reescreva a expressão.
Etapa 3.2.2
Eleve à potência de .
Etapa 3.2.3
Eleve à potência de .
Etapa 3.2.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.5
Some e .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Cancele o fator comum de .
Etapa 3.3.1.1
Cancele o fator comum.
Etapa 3.3.1.2
Reescreva a expressão.
Etapa 4
Etapa 4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4.2
Qualquer raiz de é .
Etapa 4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
A variável foi cancelada.
Todos os números reais
Etapa 6
O resultado pode ser mostrado de várias formas.
Todos os números reais
Notação de intervalo: