Matemática básica Exemplos

Löse nach k auf 1/(k+2)-4/(k-2)=(k^2)/(4-k^2)
Etapa 1
Fatore cada termo.
Toque para ver mais passagens...
Etapa 1.1
Reescreva como .
Etapa 1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.3
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.4
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.5
O fator de é o próprio .
ocorre vez.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O fator de é o próprio .
ocorre vez.
Etapa 2.8
O fator de é o próprio .
ocorre vez.
Etapa 2.9
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.1.1
Fatore de .
Etapa 3.2.1.1.2
Cancele o fator comum.
Etapa 3.2.1.1.3
Reescreva a expressão.
Etapa 3.2.1.2
Fatore de .
Etapa 3.2.1.3
Reescreva como .
Etapa 3.2.1.4
Fatore de .
Etapa 3.2.1.5
Reordene os termos.
Etapa 3.2.1.6
Eleve à potência de .
Etapa 3.2.1.7
Eleve à potência de .
Etapa 3.2.1.8
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.2.1.9
Some e .
Etapa 3.2.1.10
Reescreva como .
Etapa 3.2.1.11
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.2.1.11.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.2.1.11.2
Fatore de .
Etapa 3.2.1.11.3
Cancele o fator comum.
Etapa 3.2.1.11.4
Reescreva a expressão.
Etapa 3.2.1.12
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 3.2.1.12.1
Aplique a propriedade distributiva.
Etapa 3.2.1.12.2
Aplique a propriedade distributiva.
Etapa 3.2.1.12.3
Aplique a propriedade distributiva.
Etapa 3.2.1.13
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 3.2.1.13.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.2.1.13.1.1
Mova para a esquerda de .
Etapa 3.2.1.13.1.2
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.13.1.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.2.1.13.1.3.1
Mova .
Etapa 3.2.1.13.1.3.2
Multiplique por .
Etapa 3.2.1.13.1.4
Multiplique por .
Etapa 3.2.1.13.1.5
Multiplique por .
Etapa 3.2.1.13.2
Subtraia de .
Etapa 3.2.1.13.3
Some e .
Etapa 3.2.1.14
Aplique a propriedade distributiva.
Etapa 3.2.1.15
Multiplique por .
Etapa 3.2.1.16
Multiplique por .
Etapa 3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.1.1
Fatore de .
Etapa 3.3.1.2
Fatore de .
Etapa 3.3.1.3
Cancele o fator comum.
Etapa 3.3.1.4
Reescreva a expressão.
Etapa 3.3.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 3.3.2.1
Aplique a propriedade distributiva.
Etapa 3.3.2.2
Aplique a propriedade distributiva.
Etapa 3.3.2.3
Aplique a propriedade distributiva.
Etapa 3.3.3
Simplifique os termos.
Toque para ver mais passagens...
Etapa 3.3.3.1
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 3.3.3.1.1
Reorganize os fatores nos termos e .
Etapa 3.3.3.1.2
Some e .
Etapa 3.3.3.1.3
Some e .
Etapa 3.3.3.2
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.3.2.1
Multiplique por .
Etapa 3.3.3.2.2
Multiplique por .
Etapa 3.3.3.3
Multiplique por .
Etapa 3.3.4
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.3.4.1
Reescreva como .
Etapa 3.3.4.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 3.3.5
Simplifique os termos.
Toque para ver mais passagens...
Etapa 3.3.5.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 3.3.5.1.1
Reordene os termos.
Etapa 3.3.5.1.2
Cancele o fator comum.
Etapa 3.3.5.1.3
Divida por .
Etapa 3.3.5.2
Aplique a propriedade distributiva.
Etapa 3.3.6
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.3.6.1
Multiplique por .
Toque para ver mais passagens...
Etapa 3.3.6.1.1
Eleve à potência de .
Etapa 3.3.6.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.3.6.2
Some e .
Etapa 3.3.7
Mova para a esquerda de .
Etapa 4
Resolva a equação.
Toque para ver mais passagens...
Etapa 4.1
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 4.1.1
Subtraia dos dois lados da equação.
Etapa 4.1.2
Some aos dois lados da equação.
Etapa 4.1.3
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.3.1
Reescreva como .
Etapa 4.1.3.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 4.1.3.2.1
Aplique a propriedade distributiva.
Etapa 4.1.3.2.2
Aplique a propriedade distributiva.
Etapa 4.1.3.2.3
Aplique a propriedade distributiva.
Etapa 4.1.3.3
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 4.1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.3.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 4.1.3.3.1.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 4.1.3.3.1.2.1
Mova .
Etapa 4.1.3.3.1.2.2
Multiplique por .
Etapa 4.1.3.3.1.3
Multiplique por .
Etapa 4.1.3.3.1.4
Multiplique por .
Etapa 4.1.3.3.1.5
Multiplique por .
Etapa 4.1.3.3.1.6
Multiplique por .
Etapa 4.1.3.3.1.7
Multiplique por .
Etapa 4.1.3.3.2
Subtraia de .
Etapa 4.1.3.4
Aplique a propriedade distributiva.
Etapa 4.1.3.5
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.3.5.1
Multiplique por .
Etapa 4.1.3.5.2
Multiplique por .
Etapa 4.1.4
Some e .
Etapa 4.1.5
Some e .
Etapa 4.1.6
Subtraia de .
Etapa 4.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 4.2.1
Reordene os termos.
Etapa 4.2.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 4.2.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 4.2.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 4.2.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 4.2.4
Reescreva como .
Etapa 4.2.5
Fatore.
Toque para ver mais passagens...
Etapa 4.2.5.1
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 4.2.5.2
Remova os parênteses desnecessários.
Etapa 4.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.4.1
Defina como igual a .
Etapa 4.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 4.4.2.1
Subtraia dos dois lados da equação.
Etapa 4.4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.4.2.2.1
Divida cada termo em por .
Etapa 4.4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.4.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 4.4.2.2.2.2
Divida por .
Etapa 4.4.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.4.2.2.3.1
Divida por .
Etapa 4.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.5.1
Defina como igual a .
Etapa 4.5.2
Subtraia dos dois lados da equação.
Etapa 4.6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 4.6.1
Defina como igual a .
Etapa 4.6.2
Some aos dois lados da equação.
Etapa 4.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 5
Exclua as soluções que não tornam verdadeira.