Matemática básica Exemplos

Enncontre a Variância 88 , 102 , 106 , 116 , 128 , 134 , 166
, , , , , ,
Etapa 1
A média de um conjunto de números é a soma dividida pelo número de termos.
Etapa 2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1
Some e .
Etapa 2.2
Some e .
Etapa 2.3
Some e .
Etapa 2.4
Some e .
Etapa 2.5
Some e .
Etapa 2.6
Some e .
Etapa 3
Divida por .
Etapa 4
Estabeleça a fórmula da variância. A variância de um conjunto de valores é uma medida da propagação de seus valores.
Etapa 5
Estabeleça a fórmula da variância para este conjunto de números.
Etapa 6
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.1.1
Subtraia de .
Etapa 6.1.2
Eleve à potência de .
Etapa 6.1.3
Subtraia de .
Etapa 6.1.4
Eleve à potência de .
Etapa 6.1.5
Subtraia de .
Etapa 6.1.6
Eleve à potência de .
Etapa 6.1.7
Subtraia de .
Etapa 6.1.8
Eleve à potência de .
Etapa 6.1.9
Subtraia de .
Etapa 6.1.10
Eleve à potência de .
Etapa 6.1.11
Subtraia de .
Etapa 6.1.12
Eleve à potência de .
Etapa 6.1.13
Subtraia de .
Etapa 6.1.14
Eleve à potência de .
Etapa 6.1.15
Some e .
Etapa 6.1.16
Some e .
Etapa 6.1.17
Some e .
Etapa 6.1.18
Some e .
Etapa 6.1.19
Some e .
Etapa 6.1.20
Some e .
Etapa 6.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 6.2.1
Subtraia de .
Etapa 6.2.2
Divida por .
Etapa 7
Aproxime o resultado.