Insira um problema...
Matemática básica Exemplos
, , ,
Etapa 1
Etapa 1.1
A média de um conjunto de números é a soma dividida pelo número de termos.
Etapa 1.2
Simplifique o numerador.
Etapa 1.2.1
Some e .
Etapa 1.2.2
Some e .
Etapa 1.2.3
Some e .
Etapa 1.3
Divida por .
Etapa 2
Etapa 2.1
Converta em um valor decimal.
Etapa 2.2
Converta em um valor decimal.
Etapa 2.3
Converta em um valor decimal.
Etapa 2.4
Converta em um valor decimal.
Etapa 2.5
Os valores simplificados são .
Etapa 3
Estabeleça a fórmula do desvio padrão da amostra. O desvio padrão de um conjunto de valores é uma medida da propagação de seus valores.
Etapa 4
Estabeleça a fórmula do desvio padrão para este conjunto de números.
Etapa 5
Etapa 5.1
Subtraia de .
Etapa 5.2
Eleve à potência de .
Etapa 5.3
Subtraia de .
Etapa 5.4
Eleve à potência de .
Etapa 5.5
Subtraia de .
Etapa 5.6
Eleve à potência de .
Etapa 5.7
Subtraia de .
Etapa 5.8
Eleve à potência de .
Etapa 5.9
Some e .
Etapa 5.10
Some e .
Etapa 5.11
Some e .
Etapa 5.12
Subtraia de .
Etapa 5.13
Reescreva como .
Etapa 5.14
Simplifique o numerador.
Etapa 5.14.1
Reescreva como .
Etapa 5.14.1.1
Fatore de .
Etapa 5.14.1.2
Reescreva como .
Etapa 5.14.2
Elimine os termos abaixo do radical.
Etapa 5.15
Multiplique por .
Etapa 5.16
Combine e simplifique o denominador.
Etapa 5.16.1
Multiplique por .
Etapa 5.16.2
Eleve à potência de .
Etapa 5.16.3
Eleve à potência de .
Etapa 5.16.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 5.16.5
Some e .
Etapa 5.16.6
Reescreva como .
Etapa 5.16.6.1
Use para reescrever como .
Etapa 5.16.6.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 5.16.6.3
Combine e .
Etapa 5.16.6.4
Cancele o fator comum de .
Etapa 5.16.6.4.1
Cancele o fator comum.
Etapa 5.16.6.4.2
Reescreva a expressão.
Etapa 5.16.6.5
Avalie o expoente.
Etapa 5.17
Simplifique o numerador.
Etapa 5.17.1
Combine usando a regra do produto para radicais.
Etapa 5.17.2
Multiplique por .
Etapa 6
O desvio padrão deve ser arredondado para uma casa decimal a mais do que os dados originais. Se os dados originais forem misturados, arredonde para uma casa decimal a mais do que a menos precisa.