Álgebra Exemplos

Encontre a Diretriz x^2=-24y
Etapa 1
Reescreva a equação na forma do vértice.
Toque para ver mais passagens...
Etapa 1.1
Isole no lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 1.1.1
Reescreva a equação como .
Etapa 1.1.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.1.2.1
Divida cada termo em por .
Etapa 1.1.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.1.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.2.2.1.1
Cancele o fator comum.
Etapa 1.1.2.2.1.2
Divida por .
Etapa 1.1.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.1.2.3.1
Mova o número negativo para a frente da fração.
Etapa 1.2
Complete o quadrado de .
Toque para ver mais passagens...
Etapa 1.2.1
Use a forma para encontrar os valores de , e .
Etapa 1.2.2
Considere a forma de vértice de uma parábola.
Etapa 1.2.3
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Etapa 1.2.3.1
Substitua os valores de e na fórmula .
Etapa 1.2.3.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.2.3.2.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.2.3.2.1.1
Fatore de .
Etapa 1.2.3.2.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.3.2.1.2.1
Cancele o fator comum.
Etapa 1.2.3.2.1.2.2
Reescreva a expressão.
Etapa 1.2.3.2.2
Multiplique o numerador pelo inverso do denominador.
Etapa 1.2.3.2.3
Multiplique .
Toque para ver mais passagens...
Etapa 1.2.3.2.3.1
Multiplique por .
Etapa 1.2.3.2.3.2
Multiplique por .
Etapa 1.2.4
Encontre o valor de usando a fórmula .
Toque para ver mais passagens...
Etapa 1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 1.2.4.2
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.2.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.2.4.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 1.2.4.2.1.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 1.2.4.2.1.2.1
Multiplique por .
Etapa 1.2.4.2.1.2.2
Combine e .
Etapa 1.2.4.2.1.3
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.4.2.1.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.2.4.2.1.3.1.1
Fatore de .
Etapa 1.2.4.2.1.3.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.2.4.2.1.3.1.2.1
Fatore de .
Etapa 1.2.4.2.1.3.1.2.2
Cancele o fator comum.
Etapa 1.2.4.2.1.3.1.2.3
Reescreva a expressão.
Etapa 1.2.4.2.1.3.2
Mova o número negativo para a frente da fração.
Etapa 1.2.4.2.1.4
Multiplique o numerador pelo inverso do denominador.
Etapa 1.2.4.2.1.5
Multiplique .
Toque para ver mais passagens...
Etapa 1.2.4.2.1.5.1
Multiplique por .
Etapa 1.2.4.2.1.5.2
Multiplique por .
Etapa 1.2.4.2.1.5.3
Multiplique por .
Etapa 1.2.4.2.2
Some e .
Etapa 1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 1.3
Defina como igual ao novo lado direito.
Etapa 2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 3
Encontre o vértice .
Etapa 4
Encontre , a distância do vértice até o foco.
Toque para ver mais passagens...
Etapa 4.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 4.2
Substitua o valor de na fórmula.
Etapa 4.3
Simplifique.
Toque para ver mais passagens...
Etapa 4.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.3.1.1
Reescreva como .
Etapa 4.3.1.2
Mova o número negativo para a frente da fração.
Etapa 4.3.2
Combine e .
Etapa 4.3.3
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 4.3.3.1
Fatore de .
Etapa 4.3.3.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 4.3.3.2.1
Fatore de .
Etapa 4.3.3.2.2
Cancele o fator comum.
Etapa 4.3.3.2.3
Reescreva a expressão.
Etapa 4.3.4
Multiplique o numerador pelo inverso do denominador.
Etapa 4.3.5
Multiplique .
Toque para ver mais passagens...
Etapa 4.3.5.1
Multiplique por .
Etapa 4.3.5.2
Multiplique por .
Etapa 5
Encontre a diretriz.
Toque para ver mais passagens...
Etapa 5.1
A diretriz de uma parábola é a reta horizontal encontrada ao subtrair da coordenada y do vértice se a parábola abrir para cima ou para baixo.
Etapa 5.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 6