Insira um problema...
Álgebra Exemplos
Etapa 1
Etapa 1.1
Reescreva como .
Etapa 1.2
Deixe . Substitua em todas as ocorrências de .
Etapa 1.3
Fatore usando o método AC.
Etapa 1.3.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 1.3.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 1.4
Substitua todas as ocorrências de por .
Etapa 2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 3
Etapa 3.1
Defina como igual a .
Etapa 3.2
Resolva para .
Etapa 3.2.1
Subtraia dos dois lados da equação.
Etapa 3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 3.2.3
Simplifique .
Etapa 3.2.3.1
Reescreva como .
Etapa 3.2.3.2
Reescreva como .
Etapa 3.2.3.3
Reescreva como .
Etapa 3.2.3.4
Reescreva como .
Etapa 3.2.3.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 3.2.3.6
Mova para a esquerda de .
Etapa 3.2.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.2.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.2.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.2.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
Etapa 4.1
Defina como igual a .
Etapa 4.2
Resolva para .
Etapa 4.2.1
Subtraia dos dois lados da equação.
Etapa 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 4.2.3
Simplifique .
Etapa 4.2.3.1
Reescreva como .
Etapa 4.2.3.2
Reescreva como .
Etapa 4.2.3.3
Reescreva como .
Etapa 4.2.3.4
Reescreva como .
Etapa 4.2.3.5
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 4.2.3.6
Mova para a esquerda de .
Etapa 4.2.4
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4.2.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 4.2.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 4.2.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 5
A solução final são todos os valores que tornam verdadeiro.