Álgebra Exemplos

Determine o Número Possível de Raízes Reais f(x)=-3x^4+5x^3-x^2+8x+4
Etapa 1
Para encontrar o número possível de raízes positivas, analise os sinais nos coeficientes e conte o número de vezes que os sinais nos coeficientes mudam de positivo para negativo ou de negativo para positivo.
Etapa 2
Como há mudanças de sinal a partir do termo de ordem mais alta para a mais baixa, existem, no máximo, raízes positivas (regra dos sinais de Descartes). Os outros números possíveis de raízes positivas são encontrados pela subtração de pares de raízes (p. ex., ).
Raízes positivas: ou
Etapa 3
Para encontrar o número possível de raízes negativas, substitua por e repita a comparação de sinais.
Etapa 4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1
Aplique a regra do produto a .
Etapa 4.2
Eleve à potência de .
Etapa 4.3
Multiplique por .
Etapa 4.4
Aplique a regra do produto a .
Etapa 4.5
Eleve à potência de .
Etapa 4.6
Multiplique por .
Etapa 4.7
Aplique a regra do produto a .
Etapa 4.8
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 4.8.1
Mova .
Etapa 4.8.2
Multiplique por .
Toque para ver mais passagens...
Etapa 4.8.2.1
Eleve à potência de .
Etapa 4.8.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.8.3
Some e .
Etapa 4.9
Eleve à potência de .
Etapa 4.10
Multiplique por .
Etapa 5
Como há mudança de sinal a partir do termo de ordem mais alta para a mais baixa, existe, no máximo, raiz negativa (regra dos sinais de Descartes).
Raízes negativas:
Etapa 6
O número possível de raízes positivas é ou , e o número possível de raízes negativas é .
Raízes positivas: ou
Raízes negativas: