Insira um problema...
Álgebra Exemplos
Etapa 1
Etapa 1.1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 1.2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 1.3
Substitua e simplifique a expressão. Nesse caso, a expressão é igual a . Portanto, é uma raiz do polinômio.
Etapa 1.3.1
Substitua no polinômio.
Etapa 1.3.2
Eleve à potência de .
Etapa 1.3.3
Eleve à potência de .
Etapa 1.3.4
Multiplique por .
Etapa 1.3.5
Subtraia de .
Etapa 1.3.6
Multiplique por .
Etapa 1.3.7
Subtraia de .
Etapa 1.3.8
Some e .
Etapa 1.4
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio pode ser usado para encontrar as raízes restantes.
Etapa 1.5
Divida por .
Etapa 1.5.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
- | - | - | + |
Etapa 1.5.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
- | - | - | + |
Etapa 1.5.3
Multiplique o novo termo do quociente pelo divisor.
- | - | - | + | ||||||||
+ | - |
Etapa 1.5.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
- | - | - | + | ||||||||
- | + |
Etapa 1.5.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
- | - | - | + | ||||||||
- | + | ||||||||||
- |
Etapa 1.5.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
- | - | - | + | ||||||||
- | + | ||||||||||
- | - |
Etapa 1.5.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
- | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - |
Etapa 1.5.8
Multiplique o novo termo do quociente pelo divisor.
- | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
- | + |
Etapa 1.5.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
- | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - |
Etapa 1.5.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
- | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - | ||||||||||
- |
Etapa 1.5.11
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
- | |||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | + |
Etapa 1.5.12
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
- | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | + |
Etapa 1.5.13
Multiplique o novo termo do quociente pelo divisor.
- | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
- | + |
Etapa 1.5.14
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
- | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - |
Etapa 1.5.15
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
- | - | ||||||||||
- | - | - | + | ||||||||
- | + | ||||||||||
- | - | ||||||||||
+ | - | ||||||||||
- | + | ||||||||||
+ | - | ||||||||||
Etapa 1.5.16
Já que o resto é , a resposta final é o quociente.
Etapa 1.6
Escreva como um conjunto de fatores.
Etapa 2
Etapa 2.1
Fatore usando o método AC.
Etapa 2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 2.2
Remova os parênteses desnecessários.