Álgebra Exemplos

Representa a função num gráfico cartesiano y=csc(pi-x)
Etapa 1
Encontre as assíntotas.
Toque para ver mais passagens...
Etapa 1.1
Em qualquer , as assíntotas verticais ocorrem em , em que é um número inteiro. Use o período básico de , , para encontrar as assíntotas verticais de . Defina a parte interna da função cossecante, , para igual a para encontrar onde a assíntota vertical ocorre para .
Etapa 1.2
Resolva .
Toque para ver mais passagens...
Etapa 1.2.1
Subtraia dos dois lados da equação.
Etapa 1.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.2.2.1
Divida cada termo em por .
Etapa 1.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.2.2.2.2
Divida por .
Etapa 1.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.2.2.3.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.2.2.3.2
Divida por .
Etapa 1.3
Defina a parte interna da função cossecante como igual a .
Etapa 1.4
Resolva .
Toque para ver mais passagens...
Etapa 1.4.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 1.4.1.1
Subtraia dos dois lados da equação.
Etapa 1.4.1.2
Subtraia de .
Etapa 1.4.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 1.4.2.1
Divida cada termo em por .
Etapa 1.4.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 1.4.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.4.2.2.2
Divida por .
Etapa 1.4.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 1.4.2.3.1
Mova o número negativo do denominador de .
Etapa 1.4.2.3.2
Reescreva como .
Etapa 1.5
O período básico para ocorrerá em , em que e são assíntotas verticais.
Etapa 1.6
Encontre o período para descobrir onde existem assíntotas verticais. Elas ocorrem a cada meio período.
Toque para ver mais passagens...
Etapa 1.6.1
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 1.6.2
Divida por .
Etapa 1.7
As assíntotas verticais de ocorrem em , e a cada , em que é um número inteiro. Isso é metade do período.
Etapa 1.8
A cossecante só tem assíntotas verticais.
Nenhuma assíntota horizontal
Nenhuma assíntota oblíqua
Assíntotas verticais: , em que é um número inteiro
Nenhuma assíntota horizontal
Nenhuma assíntota oblíqua
Assíntotas verticais: , em que é um número inteiro
Etapa 2
Use a forma para encontrar as variáveis usadas para encontrar a amplitude, o período, a mudança de fase e o deslocamento vertical.
Etapa 3
Como o gráfico da função não tem um valor máximo nem mínimo, não pode haver valor para a amplitude.
Amplitude: nenhuma
Etapa 4
Encontre o período de .
Toque para ver mais passagens...
Etapa 4.1
O período da função pode ser calculado ao usar .
Etapa 4.2
Substitua por na fórmula do período.
Etapa 4.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 4.4
Divida por .
Etapa 5
Encontre a mudança de fase usando a fórmula .
Toque para ver mais passagens...
Etapa 5.1
A mudança de fase da função pode ser calculada a partir de .
Mudança de fase:
Etapa 5.2
Substitua os valores de e na equação para mudança de fase.
Mudança de fase:
Etapa 5.3
Dividir dois valores negativos resulta em um valor positivo.
Mudança de fase:
Etapa 5.4
Divida por .
Mudança de fase:
Mudança de fase:
Etapa 6
Liste as propriedades da função trigonométrica.
Amplitude: nenhuma
Período:
Mudança de fase: ( para a direita)
Deslocamento vertical: nenhum
Etapa 7
A função trigonométrica pode ser representada no gráfico usando a amplitude, o período, a mudança de fase, o deslocamento vertical e os pontos.
Assíntotas verticais: , em que é um número inteiro
Amplitude: nenhuma
Período:
Mudança de fase: ( para a direita)
Deslocamento vertical: nenhum
Etapa 8