Álgebra Exemplos

Löse nach x auf 3/(x-2)-2/(x+3)=1
Etapa 1
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 1.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 1.3
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 1.4
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 1.5
O fator de é o próprio .
ocorre vez.
Etapa 1.6
O fator de é o próprio .
ocorre vez.
Etapa 1.7
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 2.1
Multiplique cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.1.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.1.1
Cancele o fator comum.
Etapa 2.2.1.1.2
Reescreva a expressão.
Etapa 2.2.1.2
Aplique a propriedade distributiva.
Etapa 2.2.1.3
Multiplique por .
Etapa 2.2.1.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.4.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.2.1.4.2
Fatore de .
Etapa 2.2.1.4.3
Cancele o fator comum.
Etapa 2.2.1.4.4
Reescreva a expressão.
Etapa 2.2.1.5
Aplique a propriedade distributiva.
Etapa 2.2.1.6
Multiplique por .
Etapa 2.2.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 2.2.2.1
Subtraia de .
Etapa 2.2.2.2
Some e .
Etapa 2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.3.2.1
Aplique a propriedade distributiva.
Etapa 2.3.2.2
Aplique a propriedade distributiva.
Etapa 2.3.2.3
Aplique a propriedade distributiva.
Etapa 2.3.3
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 2.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.3.3.1.1
Multiplique por .
Etapa 2.3.3.1.2
Mova para a esquerda de .
Etapa 2.3.3.1.3
Multiplique por .
Etapa 2.3.3.2
Subtraia de .
Etapa 3
Resolva a equação.
Toque para ver mais passagens...
Etapa 3.1
Como está do lado direito da equação, troque os lados para que ela fique do lado esquerdo da equação.
Etapa 3.2
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 3.2.1
Subtraia dos dois lados da equação.
Etapa 3.2.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 3.2.2.1
Subtraia de .
Etapa 3.2.2.2
Some e .
Etapa 3.3
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 3.3.1
Some aos dois lados da equação.
Etapa 3.3.2
Some e .
Etapa 3.4
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 4
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: