Insira um problema...
Álgebra Exemplos
Etapa 1
Etapa 1.1
Reescreva como .
Etapa 1.2
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.3
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.4
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.5
O fator de é o próprio .
ocorre vez.
Etapa 2.6
O fator de é o próprio .
ocorre vez.
Etapa 2.7
O fator de é o próprio .
ocorre vez.
Etapa 2.8
O fator de é o próprio .
ocorre vez.
Etapa 2.9
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Cancele o fator comum de .
Etapa 3.2.1.1
Cancele o fator comum.
Etapa 3.2.1.2
Reescreva a expressão.
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Simplifique cada termo.
Etapa 3.3.1.1
Cancele o fator comum de .
Etapa 3.3.1.1.1
Cancele o fator comum.
Etapa 3.3.1.1.2
Reescreva a expressão.
Etapa 3.3.1.2
Aplique a propriedade distributiva.
Etapa 3.3.1.3
Multiplique por .
Etapa 3.3.1.4
Cancele o fator comum de .
Etapa 3.3.1.4.1
Fatore de .
Etapa 3.3.1.4.2
Cancele o fator comum.
Etapa 3.3.1.4.3
Reescreva a expressão.
Etapa 3.3.1.5
Aplique a propriedade distributiva.
Etapa 3.3.1.6
Multiplique por .
Etapa 3.3.1.7
Mova para a esquerda de .
Etapa 3.3.2
Some e .
Etapa 4
Etapa 4.1
Reescreva a equação como .
Etapa 4.2
Mova todos os termos para o lado esquerdo da equação e simplifique.
Etapa 4.2.1
Subtraia dos dois lados da equação.
Etapa 4.2.2
Subtraia de .
Etapa 4.3
Use a fórmula quadrática para encontrar as soluções.
Etapa 4.4
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 4.5
Simplifique.
Etapa 4.5.1
Simplifique o numerador.
Etapa 4.5.1.1
Eleve à potência de .
Etapa 4.5.1.2
Multiplique .
Etapa 4.5.1.2.1
Multiplique por .
Etapa 4.5.1.2.2
Multiplique por .
Etapa 4.5.1.3
Some e .
Etapa 4.5.1.4
Reescreva como .
Etapa 4.5.1.4.1
Fatore de .
Etapa 4.5.1.4.2
Reescreva como .
Etapa 4.5.1.5
Elimine os termos abaixo do radical.
Etapa 4.5.2
Multiplique por .
Etapa 4.5.3
Simplifique .
Etapa 4.6
A resposta final é a combinação das duas soluções.
Etapa 5
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: