Insira um problema...
Álgebra Exemplos
Etapa 1
Etapa 1.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 1.1.1
Subtraia dos dois lados da equação.
Etapa 1.1.2
Some aos dois lados da equação.
Etapa 1.1.3
Some aos dois lados da equação.
Etapa 1.2
Complete o quadrado de .
Etapa 1.2.1
Use a forma para encontrar os valores de , e .
Etapa 1.2.2
Considere a forma de vértice de uma parábola.
Etapa 1.2.3
Encontre o valor de usando a fórmula .
Etapa 1.2.3.1
Substitua os valores de e na fórmula .
Etapa 1.2.3.2
Simplifique o lado direito.
Etapa 1.2.3.2.1
Cancele o fator comum de .
Etapa 1.2.3.2.1.1
Cancele o fator comum.
Etapa 1.2.3.2.1.2
Reescreva a expressão.
Etapa 1.2.3.2.1.3
Mova o número negativo do denominador de .
Etapa 1.2.3.2.2
Multiplique por .
Etapa 1.2.4
Encontre o valor de usando a fórmula .
Etapa 1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 1.2.4.2
Simplifique o lado direito.
Etapa 1.2.4.2.1
Simplifique cada termo.
Etapa 1.2.4.2.1.1
Eleve à potência de .
Etapa 1.2.4.2.1.2
Multiplique por .
Etapa 1.2.4.2.1.3
Divida por .
Etapa 1.2.4.2.1.4
Multiplique por .
Etapa 1.2.4.2.2
Some e .
Etapa 1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 1.3
Defina como igual ao novo lado direito.
Etapa 2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 3
Encontre o vértice .
Etapa 4
Etapa 4.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 4.2
Substitua o valor de na fórmula.
Etapa 4.3
Cancele o fator comum de e .
Etapa 4.3.1
Reescreva como .
Etapa 4.3.2
Mova o número negativo para a frente da fração.
Etapa 5
Etapa 5.1
A diretriz de uma parábola é a reta horizontal encontrada ao subtrair da coordenada y do vértice se a parábola abrir para cima ou para baixo.
Etapa 5.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 6