Insira um problema...
Álgebra Exemplos
Etapa 1
Etapa 1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 1.2
Como contém números e variáveis, há quatro etapas para encontrar o MMC. Encontre o MMC das partes numéricas, variáveis e variáveis compostas. Depois, multiplique tudo.
As etapas para encontrar o MMC de são:
1. Encontre o MMC da parte numérica .
2. Encontre o MMC da parte variável .
3. Encontre o MMC da parte variável composta .
4. Multiplique todos os MMCs juntos.
Etapa 1.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 1.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 1.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 1.6
O fator de é o próprio .
ocorre vez.
Etapa 1.7
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 1.8
O fator de é o próprio .
ocorre vez.
Etapa 1.9
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 1.10
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 2
Etapa 2.1
Multiplique cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Etapa 2.2.1
Simplifique cada termo.
Etapa 2.2.1.1
Cancele o fator comum de .
Etapa 2.2.1.1.1
Fatore de .
Etapa 2.2.1.1.2
Cancele o fator comum.
Etapa 2.2.1.1.3
Reescreva a expressão.
Etapa 2.2.1.2
Cancele o fator comum de .
Etapa 2.2.1.2.1
Cancele o fator comum.
Etapa 2.2.1.2.2
Reescreva a expressão.
Etapa 2.3
Simplifique o lado direito.
Etapa 2.3.1
Cancele o fator comum de .
Etapa 2.3.1.1
Cancele o fator comum.
Etapa 2.3.1.2
Reescreva a expressão.
Etapa 2.3.2
Aplique a propriedade distributiva.
Etapa 2.3.3
Multiplique por .
Etapa 3
Etapa 3.1
Mova todos os termos que contêm para o lado esquerdo da equação.
Etapa 3.1.1
Subtraia dos dois lados da equação.
Etapa 3.1.2
Subtraia de .
Etapa 3.2
Subtraia dos dois lados da equação.
Etapa 3.3
Subtraia de .
Etapa 3.4
Fatore o lado esquerdo da equação.
Etapa 3.4.1
Fatore de .
Etapa 3.4.1.1
Reordene e .
Etapa 3.4.1.2
Fatore de .
Etapa 3.4.1.3
Fatore de .
Etapa 3.4.1.4
Reescreva como .
Etapa 3.4.1.5
Fatore de .
Etapa 3.4.1.6
Fatore de .
Etapa 3.4.2
Fatore usando a regra do quadrado perfeito.
Etapa 3.4.2.1
Reescreva como .
Etapa 3.4.2.2
Verifique se o termo do meio é duas vezes o produto dos números ao quadrado no primeiro e no terceiro termos.
Etapa 3.4.2.3
Reescreva o polinômio.
Etapa 3.4.2.4
Fatore usando a regra do trinômio quadrado perfeito , em que e .
Etapa 3.5
Divida cada termo em por e simplifique.
Etapa 3.5.1
Divida cada termo em por .
Etapa 3.5.2
Simplifique o lado esquerdo.
Etapa 3.5.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.5.2.2
Divida por .
Etapa 3.5.3
Simplifique o lado direito.
Etapa 3.5.3.1
Divida por .
Etapa 3.6
Defina como igual a .
Etapa 3.7
Some aos dois lados da equação.