Álgebra Exemplos

Löse nach x auf (3x)/2-2/(x-2)=x
Etapa 1
Encontre o MMC dos termos na equação.
Toque para ver mais passagens...
Etapa 1.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 1.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 1.3
Como não tem fatores além de e .
é um número primo
Etapa 1.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 1.5
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 1.6
O fator de é o próprio .
ocorre vez.
Etapa 1.7
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 1.8
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 2
Multiplique cada termo em por para eliminar as frações.
Toque para ver mais passagens...
Etapa 2.1
Multiplique cada termo em por .
Etapa 2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.2.1
Cancele o fator comum.
Etapa 2.2.1.2.2
Reescreva a expressão.
Etapa 2.2.1.3
Aplique a propriedade distributiva.
Etapa 2.2.1.4
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.2.1.4.1
Mova .
Etapa 2.2.1.4.2
Multiplique por .
Etapa 2.2.1.5
Multiplique por .
Etapa 2.2.1.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.1.6.1
Mova o negativo de maior ordem em para o numerador.
Etapa 2.2.1.6.2
Fatore de .
Etapa 2.2.1.6.3
Cancele o fator comum.
Etapa 2.2.1.6.4
Reescreva a expressão.
Etapa 2.2.1.7
Multiplique por .
Etapa 2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.3.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.3.2
Aplique a propriedade distributiva.
Etapa 2.3.3
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.3.3.1
Mova .
Etapa 2.3.3.2
Multiplique por .
Etapa 2.3.4
Multiplique por .
Etapa 3
Resolva a equação.
Toque para ver mais passagens...
Etapa 3.1
Mova todos os termos que contêm para o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 3.1.1
Subtraia dos dois lados da equação.
Etapa 3.1.2
Some aos dois lados da equação.
Etapa 3.1.3
Subtraia de .
Etapa 3.1.4
Some e .
Etapa 3.2
Use a fórmula quadrática para encontrar as soluções.
Etapa 3.3
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 3.4
Simplifique.
Toque para ver mais passagens...
Etapa 3.4.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 3.4.1.1
Eleve à potência de .
Etapa 3.4.1.2
Multiplique .
Toque para ver mais passagens...
Etapa 3.4.1.2.1
Multiplique por .
Etapa 3.4.1.2.2
Multiplique por .
Etapa 3.4.1.3
Some e .
Etapa 3.4.1.4
Reescreva como .
Toque para ver mais passagens...
Etapa 3.4.1.4.1
Fatore de .
Etapa 3.4.1.4.2
Reescreva como .
Etapa 3.4.1.5
Elimine os termos abaixo do radical.
Etapa 3.4.2
Multiplique por .
Etapa 3.4.3
Simplifique .
Etapa 3.5
A resposta final é a combinação das duas soluções.
Etapa 4
O resultado pode ser mostrado de várias formas.
Forma exata:
Forma decimal: