Álgebra Exemplos

Encontre os Valores Excluídos ((x^2+10x+25)/(x-5))÷((x^2-25)/(5x+10))
Etapa 1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 2
Some aos dois lados da equação.
Etapa 3
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 4
Resolva .
Toque para ver mais passagens...
Etapa 4.1
Subtraia dos dois lados da equação.
Etapa 4.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 4.2.1
Divida cada termo em por .
Etapa 4.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 4.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Cancele o fator comum.
Etapa 4.2.2.1.2
Divida por .
Etapa 4.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 4.2.3.1
Divida por .
Etapa 5
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 6
Resolva .
Toque para ver mais passagens...
Etapa 6.1
Defina o numerador como igual a zero.
Etapa 6.2
Resolva a equação para .
Toque para ver mais passagens...
Etapa 6.2.1
Some aos dois lados da equação.
Etapa 6.2.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 6.2.3
Simplifique .
Toque para ver mais passagens...
Etapa 6.2.3.1
Reescreva como .
Etapa 6.2.3.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.2.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 6.2.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 6.2.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 6.2.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 7
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 8