Exemplos
[0301430312241234]⎡⎢
⎢
⎢
⎢⎣0301430312241234⎤⎥
⎥
⎥
⎥⎦
Etapa 1
Etapa 1.1
Consider the corresponding sign chart.
|+-+--+-++-+--+-+|∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Etapa 1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Etapa 1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|303224234|∣∣
∣∣303224234∣∣
∣∣
Etapa 1.4
Multiply element a11a11 by its cofactor.
0|303224234|0∣∣
∣∣303224234∣∣
∣∣
Etapa 1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|403124134|∣∣
∣∣403124134∣∣
∣∣
Etapa 1.6
Multiply element a12a12 by its cofactor.
-3|403124134|−3∣∣
∣∣403124134∣∣
∣∣
Etapa 1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|433124124|∣∣
∣∣433124124∣∣
∣∣
Etapa 1.8
Multiply element a13a13 by its cofactor.
0|433124124|0∣∣
∣∣433124124∣∣
∣∣
Etapa 1.9
The minor for a14a14 is the determinant with row 11 and column 44 deleted.
|430122123|∣∣
∣∣430122123∣∣
∣∣
Etapa 1.10
Multiply element a14a14 by its cofactor.
-1|430122123|−1∣∣
∣∣430122123∣∣
∣∣
Etapa 1.11
Add the terms together.
0|303224234|-3|403124134|+0|433124124|-1|430122123|0∣∣
∣∣303224234∣∣
∣∣−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
0|303224234|-3|403124134|+0|433124124|-1|430122123|0∣∣
∣∣303224234∣∣
∣∣−3∣∣
∣∣403124134∣∣
∣∣+0∣∣
∣∣433124124∣∣
∣∣−1∣∣
∣∣430122123∣∣
∣∣
Etapa 2
Multiplique 0 por |303224234|.
0-3|403124134|+0|433124124|-1|430122123|
Etapa 3
Multiplique 0 por |433124124|.
0-3|403124134|+0-1|430122123|
Etapa 4
Etapa 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 4.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 4.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 4.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2434|
Etapa 4.1.4
Multiply element a11 by its cofactor.
4|2434|
Etapa 4.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1414|
Etapa 4.1.6
Multiply element a12 by its cofactor.
0|1414|
Etapa 4.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1213|
Etapa 4.1.8
Multiply element a13 by its cofactor.
3|1213|
Etapa 4.1.9
Add the terms together.
0-3(4|2434|+0|1414|+3|1213|)+0-1|430122123|
0-3(4|2434|+0|1414|+3|1213|)+0-1|430122123|
Etapa 4.2
Multiplique 0 por |1414|.
0-3(4|2434|+0+3|1213|)+0-1|430122123|
Etapa 4.3
Avalie |2434|.
Etapa 4.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-3(4(2⋅4-3⋅4)+0+3|1213|)+0-1|430122123|
Etapa 4.3.2
Simplifique o determinante.
Etapa 4.3.2.1
Simplifique cada termo.
Etapa 4.3.2.1.1
Multiplique 2 por 4.
0-3(4(8-3⋅4)+0+3|1213|)+0-1|430122123|
Etapa 4.3.2.1.2
Multiplique -3 por 4.
0-3(4(8-12)+0+3|1213|)+0-1|430122123|
0-3(4(8-12)+0+3|1213|)+0-1|430122123|
Etapa 4.3.2.2
Subtraia 12 de 8.
0-3(4⋅-4+0+3|1213|)+0-1|430122123|
0-3(4⋅-4+0+3|1213|)+0-1|430122123|
0-3(4⋅-4+0+3|1213|)+0-1|430122123|
Etapa 4.4
Avalie |1213|.
Etapa 4.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-3(4⋅-4+0+3(1⋅3-1⋅2))+0-1|430122123|
Etapa 4.4.2
Simplifique o determinante.
Etapa 4.4.2.1
Simplifique cada termo.
Etapa 4.4.2.1.1
Multiplique 3 por 1.
0-3(4⋅-4+0+3(3-1⋅2))+0-1|430122123|
Etapa 4.4.2.1.2
Multiplique -1 por 2.
0-3(4⋅-4+0+3(3-2))+0-1|430122123|
0-3(4⋅-4+0+3(3-2))+0-1|430122123|
Etapa 4.4.2.2
Subtraia 2 de 3.
0-3(4⋅-4+0+3⋅1)+0-1|430122123|
0-3(4⋅-4+0+3⋅1)+0-1|430122123|
0-3(4⋅-4+0+3⋅1)+0-1|430122123|
Etapa 4.5
Simplifique o determinante.
Etapa 4.5.1
Simplifique cada termo.
Etapa 4.5.1.1
Multiplique 4 por -4.
0-3(-16+0+3⋅1)+0-1|430122123|
Etapa 4.5.1.2
Multiplique 3 por 1.
0-3(-16+0+3)+0-1|430122123|
0-3(-16+0+3)+0-1|430122123|
Etapa 4.5.2
Some -16 e 0.
0-3(-16+3)+0-1|430122123|
Etapa 4.5.3
Some -16 e 3.
0-3⋅-13+0-1|430122123|
0-3⋅-13+0-1|430122123|
0-3⋅-13+0-1|430122123|
Etapa 5
Etapa 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 1 by its cofactor and add.
Etapa 5.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|
Etapa 5.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 5.1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
|2223|
Etapa 5.1.4
Multiply element a11 by its cofactor.
4|2223|
Etapa 5.1.5
The minor for a12 is the determinant with row 1 and column 2 deleted.
|1213|
Etapa 5.1.6
Multiply element a12 by its cofactor.
-3|1213|
Etapa 5.1.7
The minor for a13 is the determinant with row 1 and column 3 deleted.
|1212|
Etapa 5.1.8
Multiply element a13 by its cofactor.
0|1212|
Etapa 5.1.9
Add the terms together.
0-3⋅-13+0-1(4|2223|-3|1213|+0|1212|)
0-3⋅-13+0-1(4|2223|-3|1213|+0|1212|)
Etapa 5.2
Multiplique 0 por |1212|.
0-3⋅-13+0-1(4|2223|-3|1213|+0)
Etapa 5.3
Avalie |2223|.
Etapa 5.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-3⋅-13+0-1(4(2⋅3-2⋅2)-3|1213|+0)
Etapa 5.3.2
Simplifique o determinante.
Etapa 5.3.2.1
Simplifique cada termo.
Etapa 5.3.2.1.1
Multiplique 2 por 3.
0-3⋅-13+0-1(4(6-2⋅2)-3|1213|+0)
Etapa 5.3.2.1.2
Multiplique -2 por 2.
0-3⋅-13+0-1(4(6-4)-3|1213|+0)
0-3⋅-13+0-1(4(6-4)-3|1213|+0)
Etapa 5.3.2.2
Subtraia 4 de 6.
0-3⋅-13+0-1(4⋅2-3|1213|+0)
0-3⋅-13+0-1(4⋅2-3|1213|+0)
0-3⋅-13+0-1(4⋅2-3|1213|+0)
Etapa 5.4
Avalie |1213|.
Etapa 5.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb.
0-3⋅-13+0-1(4⋅2-3(1⋅3-1⋅2)+0)
Etapa 5.4.2
Simplifique o determinante.
Etapa 5.4.2.1
Simplifique cada termo.
Etapa 5.4.2.1.1
Multiplique 3 por 1.
0-3⋅-13+0-1(4⋅2-3(3-1⋅2)+0)
Etapa 5.4.2.1.2
Multiplique -1 por 2.
0-3⋅-13+0-1(4⋅2-3(3-2)+0)
0-3⋅-13+0-1(4⋅2-3(3-2)+0)
Etapa 5.4.2.2
Subtraia 2 de 3.
0-3⋅-13+0-1(4⋅2-3⋅1+0)
0-3⋅-13+0-1(4⋅2-3⋅1+0)
0-3⋅-13+0-1(4⋅2-3⋅1+0)
Etapa 5.5
Simplifique o determinante.
Etapa 5.5.1
Simplifique cada termo.
Etapa 5.5.1.1
Multiplique 4 por 2.
0-3⋅-13+0-1(8-3⋅1+0)
Etapa 5.5.1.2
Multiplique -3 por 1.
0-3⋅-13+0-1(8-3+0)
0-3⋅-13+0-1(8-3+0)
Etapa 5.5.2
Subtraia 3 de 8.
0-3⋅-13+0-1(5+0)
Etapa 5.5.3
Some 5 e 0.
0-3⋅-13+0-1⋅5
0-3⋅-13+0-1⋅5
0-3⋅-13+0-1⋅5
Etapa 6
Etapa 6.1
Simplifique cada termo.
Etapa 6.1.1
Multiplique -3 por -13.
0+39+0-1⋅5
Etapa 6.1.2
Multiplique -1 por 5.
0+39+0-5
0+39+0-5
Etapa 6.2
Some 0 e 39.
39+0-5
Etapa 6.3
Some 39 e 0.
39-5
Etapa 6.4
Subtraia 5 de 39.
34
34