Álgebra linear Exemplos

350750110
Etapa 1
Nullity is the dimension of the null space, which is the same as the number of free variables in the system after row reducing. The free variables are the columns without pivot positions.
Etapa 2
Encontre a forma escalonada reduzida por linhas.
Toque para ver mais passagens...
Etapa 2.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
Toque para ver mais passagens...
Etapa 2.1.1
Multiply each element of R1 by 13 to make the entry at 1,1 a 1.
⎢ ⎢335303750110⎥ ⎥
Etapa 2.1.2
Simplifique R1.
⎢ ⎢1530750110⎥ ⎥
⎢ ⎢1530750110⎥ ⎥
Etapa 2.2
Perform the row operation R2=R27R1 to make the entry at 2,1 a 0.
Toque para ver mais passagens...
Etapa 2.2.1
Perform the row operation R2=R27R1 to make the entry at 2,1 a 0.
⎢ ⎢ ⎢153077157(53)070110⎥ ⎥ ⎥
Etapa 2.2.2
Simplifique R2.
⎢ ⎢153002030110⎥ ⎥
⎢ ⎢153002030110⎥ ⎥
Etapa 2.3
Perform the row operation R3=R3R1 to make the entry at 3,1 a 0.
Toque para ver mais passagens...
Etapa 2.3.1
Perform the row operation R3=R3R1 to make the entry at 3,1 a 0.
⎢ ⎢ ⎢1530020301115300⎥ ⎥ ⎥
Etapa 2.3.2
Simplifique R3.
⎢ ⎢ ⎢1530020300230⎥ ⎥ ⎥
⎢ ⎢ ⎢1530020300230⎥ ⎥ ⎥
Etapa 2.4
Multiply each element of R2 by 320 to make the entry at 2,2 a 1.
Toque para ver mais passagens...
Etapa 2.4.1
Multiply each element of R2 by 320 to make the entry at 2,2 a 1.
⎢ ⎢ ⎢ ⎢15303200320(203)32000230⎥ ⎥ ⎥ ⎥
Etapa 2.4.2
Simplifique R2.
⎢ ⎢15300100230⎥ ⎥
⎢ ⎢15300100230⎥ ⎥
Etapa 2.5
Perform the row operation R3=R3+23R2 to make the entry at 3,2 a 0.
Toque para ver mais passagens...
Etapa 2.5.1
Perform the row operation R3=R3+23R2 to make the entry at 3,2 a 0.
⎢ ⎢15300100+23023+2310+230⎥ ⎥
Etapa 2.5.2
Simplifique R3.
⎢ ⎢1530010000⎥ ⎥
⎢ ⎢1530010000⎥ ⎥
Etapa 2.6
Perform the row operation R1=R153R2 to make the entry at 1,2 a 0.
Toque para ver mais passagens...
Etapa 2.6.1
Perform the row operation R1=R153R2 to make the entry at 1,2 a 0.
⎢ ⎢1530535310530010000⎥ ⎥
Etapa 2.6.2
Simplifique R1.
100010000
100010000
100010000
Etapa 3
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Etapa 4
The nullity is the number of columns without a pivot position in the row reduced matrix.
1
Insira SEU problema
using Amazon.Auth.AccessControlPolicy;
O Mathway requer o JavaScript e um navegador moderno.
 x2  12  π  xdx  
AmazonPay