Álgebra linear Exemplos
-3x+y-z=-2−3x+y−z=−2 , -3x+z=4−3x+z=4 , y-5z=0y−5z=0
Etapa 1
Write the system as a matrix.
[-31-1-2-301401-50]⎡⎢
⎢⎣−31−1−2−301401−50⎤⎥
⎥⎦
Etapa 2
Etapa 2.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
Etapa 2.1.1
Multiply each element of R1R1 by -13−13 to make the entry at 1,11,1 a 11.
[-13⋅-3-13⋅1-13⋅-1-13⋅-2-301401-50]⎡⎢
⎢⎣−13⋅−3−13⋅1−13⋅−1−13⋅−2−301401−50⎤⎥
⎥⎦
Etapa 2.1.2
Simplifique R1R1.
[1-131323-301401-50]⎡⎢
⎢⎣1−131323−301401−50⎤⎥
⎥⎦
[1-131323-301401-50]⎡⎢
⎢⎣1−131323−301401−50⎤⎥
⎥⎦
Etapa 2.2
Perform the row operation R2=R2+3R1R2=R2+3R1 to make the entry at 2,12,1 a 00.
Etapa 2.2.1
Perform the row operation R2=R2+3R1R2=R2+3R1 to make the entry at 2,12,1 a 00.
[1-131323-3+3⋅10+3(-13)1+3(13)4+3(23)01-50]⎡⎢
⎢
⎢
⎢⎣1−131323−3+3⋅10+3(−13)1+3(13)4+3(23)01−50⎤⎥
⎥
⎥
⎥⎦
Etapa 2.2.2
Simplifique R2R2.
[1-1313230-12601-50]⎡⎢
⎢⎣1−1313230−12601−50⎤⎥
⎥⎦
[1-1313230-12601-50]⎡⎢
⎢⎣1−1313230−12601−50⎤⎥
⎥⎦
Etapa 2.3
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
Etapa 2.3.1
Multiply each element of R2R2 by -1−1 to make the entry at 2,22,2 a 11.
[1-131323-0--1-1⋅2-1⋅601-50]⎡⎢
⎢⎣1−131323−0−−1−1⋅2−1⋅601−50⎤⎥
⎥⎦
Etapa 2.3.2
Simplifique R2R2.
[1-13132301-2-601-50]
[1-13132301-2-601-50]
Etapa 2.4
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
Etapa 2.4.1
Perform the row operation R3=R3-R2 to make the entry at 3,2 a 0.
[1-13132301-2-60-01-1-5+20+6]
Etapa 2.4.2
Simplifique R3.
[1-13132301-2-600-36]
[1-13132301-2-600-36]
Etapa 2.5
Multiply each element of R3 by -13 to make the entry at 3,3 a 1.
Etapa 2.5.1
Multiply each element of R3 by -13 to make the entry at 3,3 a 1.
[1-13132301-2-6-13⋅0-13⋅0-13⋅-3-13⋅6]
Etapa 2.5.2
Simplifique R3.
[1-13132301-2-6001-2]
[1-13132301-2-6001-2]
Etapa 2.6
Perform the row operation R2=R2+2R3 to make the entry at 2,3 a 0.
Etapa 2.6.1
Perform the row operation R2=R2+2R3 to make the entry at 2,3 a 0.
[1-1313230+2⋅01+2⋅0-2+2⋅1-6+2⋅-2001-2]
Etapa 2.6.2
Simplifique R2.
[1-131323010-10001-2]
[1-131323010-10001-2]
Etapa 2.7
Perform the row operation R1=R1-13R3 to make the entry at 1,3 a 0.
Etapa 2.7.1
Perform the row operation R1=R1-13R3 to make the entry at 1,3 a 0.
[1-13⋅0-13-13⋅013-13⋅123-13⋅-2010-10001-2]
Etapa 2.7.2
Simplifique R1.
[1-13043010-10001-2]
[1-13043010-10001-2]
Etapa 2.8
Perform the row operation R1=R1+13R2 to make the entry at 1,2 a 0.
Etapa 2.8.1
Perform the row operation R1=R1+13R2 to make the entry at 1,2 a 0.
[1+13⋅0-13+13⋅10+13⋅043+13⋅-10010-10001-2]
Etapa 2.8.2
Simplifique R1.
[100-2010-10001-2]
[100-2010-10001-2]
[100-2010-10001-2]
Etapa 3
Use the result matrix to declare the final solution to the system of equations.
x=-2
y=-10
z=-2
Etapa 4
The solution is the set of ordered pairs that make the system true.
(-2,-10,-2)