Álgebra linear Exemplos
[203300024]⎡⎢⎣203300024⎤⎥⎦
Etapa 1
Etapa 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Etapa 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Etapa 1.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|0324|∣∣∣0324∣∣∣
Etapa 1.1.4
Multiply element a21a21 by its cofactor.
-3|0324|−3∣∣∣0324∣∣∣
Etapa 1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2304|∣∣∣2304∣∣∣
Etapa 1.1.6
Multiply element a22a22 by its cofactor.
0|2304|0∣∣∣2304∣∣∣
Etapa 1.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|2002|∣∣∣2002∣∣∣
Etapa 1.1.8
Multiply element a23a23 by its cofactor.
0|2002|0∣∣∣2002∣∣∣
Etapa 1.1.9
Add the terms together.
-3|0324|+0|2304|+0|2002|−3∣∣∣0324∣∣∣+0∣∣∣2304∣∣∣+0∣∣∣2002∣∣∣
-3|0324|+0|2304|+0|2002|−3∣∣∣0324∣∣∣+0∣∣∣2304∣∣∣+0∣∣∣2002∣∣∣
Etapa 1.2
Multiplique 00 por |2304|∣∣∣2304∣∣∣.
-3|0324|+0+0|2002|−3∣∣∣0324∣∣∣+0+0∣∣∣2002∣∣∣
Etapa 1.3
Multiplique 00 por |2002|∣∣∣2002∣∣∣.
-3|0324|+0+0−3∣∣∣0324∣∣∣+0+0
Etapa 1.4
Avalie |0324|∣∣∣0324∣∣∣.
Etapa 1.4.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
-3(0⋅4-2⋅3)+0+0−3(0⋅4−2⋅3)+0+0
Etapa 1.4.2
Simplifique o determinante.
Etapa 1.4.2.1
Simplifique cada termo.
Etapa 1.4.2.1.1
Multiplique 00 por 44.
-3(0-2⋅3)+0+0−3(0−2⋅3)+0+0
Etapa 1.4.2.1.2
Multiplique -2−2 por 33.
-3(0-6)+0+0−3(0−6)+0+0
-3(0-6)+0+0−3(0−6)+0+0
Etapa 1.4.2.2
Subtraia 66 de 00.
-3⋅-6+0+0−3⋅−6+0+0
-3⋅-6+0+0−3⋅−6+0+0
-3⋅-6+0+0−3⋅−6+0+0
Etapa 1.5
Simplifique o determinante.
Etapa 1.5.1
Multiplique -3−3 por -6−6.
18+0+018+0+0
Etapa 1.5.2
Some 1818 e 00.
18+018+0
Etapa 1.5.3
Some 1818 e 00.
1818
1818
1818
Etapa 2
Since the determinant is non-zero, the inverse exists.
Etapa 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[203100300010024001]⎡⎢⎣203100300010024001⎤⎥⎦
Etapa 4
Etapa 4.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Etapa 4.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[220232120202300010024001]⎡⎢
⎢⎣220232120202300010024001⎤⎥
⎥⎦
Etapa 4.1.2
Simplifique R1R1.
[10321200300010024001]⎡⎢
⎢⎣10321200300010024001⎤⎥
⎥⎦
[10321200300010024001]
Etapa 4.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Etapa 4.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[103212003-3⋅10-3⋅00-3(32)0-3(12)1-3⋅00-3⋅0024001]
Etapa 4.2.2
Simplifique R2.
[1032120000-92-3210024001]
[1032120000-92-3210024001]
Etapa 4.3
Swap R3 with R2 to put a nonzero entry at 2,2.
[1032120002400100-92-3210]
Etapa 4.4
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
Etapa 4.4.1
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
[1032120002224202021200-92-3210]
Etapa 4.4.2
Simplifique R2.
[10321200012001200-92-3210]
[10321200012001200-92-3210]
Etapa 4.5
Multiply each element of R3 by -29 to make the entry at 3,3 a 1.
Etapa 4.5.1
Multiply each element of R3 by -29 to make the entry at 3,3 a 1.
[103212000120012-29⋅0-29⋅0-29(-92)-29(-32)-29⋅1-29⋅0]
Etapa 4.5.2
Simplifique R3.
[10321200012001200113-290]
[10321200012001200113-290]
Etapa 4.6
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
Etapa 4.6.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[103212000-2⋅01-2⋅02-2⋅10-2(13)0-2(-29)12-2⋅000113-290]
Etapa 4.6.2
Simplifique R2.
[10321200010-23491200113-290]
[10321200010-23491200113-290]
Etapa 4.7
Perform the row operation R1=R1-32R3 to make the entry at 1,3 a 0.
Etapa 4.7.1
Perform the row operation R1=R1-32R3 to make the entry at 1,3 a 0.
[1-32⋅00-32⋅032-32⋅112-32⋅130-32(-29)0-32⋅0010-23491200113-290]
Etapa 4.7.2
Simplifique R1.
[1000130010-23491200113-290]
[1000130010-23491200113-290]
[1000130010-23491200113-290]
Etapa 5
The right half of the reduced row echelon form is the inverse.
[0130-23491213-290]