Álgebra linear Exemplos

[203300024]203300024
Etapa 1
Find the determinant.
Toque para ver mais passagens...
Etapa 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 22 by its cofactor and add.
Toque para ver mais passagens...
Etapa 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 1.1.3
The minor for a21a21 is the determinant with row 22 and column 11 deleted.
|0324|0324
Etapa 1.1.4
Multiply element a21a21 by its cofactor.
-3|0324|30324
Etapa 1.1.5
The minor for a22a22 is the determinant with row 22 and column 22 deleted.
|2304|2304
Etapa 1.1.6
Multiply element a22a22 by its cofactor.
0|2304|02304
Etapa 1.1.7
The minor for a23a23 is the determinant with row 22 and column 33 deleted.
|2002|2002
Etapa 1.1.8
Multiply element a23a23 by its cofactor.
0|2002|02002
Etapa 1.1.9
Add the terms together.
-3|0324|+0|2304|+0|2002|30324+02304+02002
-3|0324|+0|2304|+0|2002|30324+02304+02002
Etapa 1.2
Multiplique 00 por |2304|2304.
-3|0324|+0+0|2002|30324+0+02002
Etapa 1.3
Multiplique 00 por |2002|2002.
-3|0324|+0+030324+0+0
Etapa 1.4
Avalie |0324|0324.
Toque para ver mais passagens...
Etapa 1.4.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
-3(04-23)+0+03(0423)+0+0
Etapa 1.4.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.1.1
Multiplique 00 por 44.
-3(0-23)+0+03(023)+0+0
Etapa 1.4.2.1.2
Multiplique -22 por 33.
-3(0-6)+0+03(06)+0+0
-3(0-6)+0+03(06)+0+0
Etapa 1.4.2.2
Subtraia 66 de 00.
-3-6+0+036+0+0
-3-6+0+036+0+0
-3-6+0+036+0+0
Etapa 1.5
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.5.1
Multiplique -33 por -66.
18+0+018+0+0
Etapa 1.5.2
Some 1818 e 00.
18+018+0
Etapa 1.5.3
Some 1818 e 00.
1818
1818
1818
Etapa 2
Since the determinant is non-zero, the inverse exists.
Etapa 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[203100300010024001]203100300010024001
Etapa 4
Encontre a forma escalonada reduzida por linhas.
Toque para ver mais passagens...
Etapa 4.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
Toque para ver mais passagens...
Etapa 4.1.1
Multiply each element of R1R1 by 1212 to make the entry at 1,11,1 a 11.
[220232120202300010024001]⎢ ⎢220232120202300010024001⎥ ⎥
Etapa 4.1.2
Simplifique R1R1.
[10321200300010024001]⎢ ⎢10321200300010024001⎥ ⎥
[10321200300010024001]
Etapa 4.2
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
Toque para ver mais passagens...
Etapa 4.2.1
Perform the row operation R2=R2-3R1 to make the entry at 2,1 a 0.
[103212003-310-300-3(32)0-3(12)1-300-30024001]
Etapa 4.2.2
Simplifique R2.
[1032120000-92-3210024001]
[1032120000-92-3210024001]
Etapa 4.3
Swap R3 with R2 to put a nonzero entry at 2,2.
[1032120002400100-92-3210]
Etapa 4.4
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
Toque para ver mais passagens...
Etapa 4.4.1
Multiply each element of R2 by 12 to make the entry at 2,2 a 1.
[1032120002224202021200-92-3210]
Etapa 4.4.2
Simplifique R2.
[10321200012001200-92-3210]
[10321200012001200-92-3210]
Etapa 4.5
Multiply each element of R3 by -29 to make the entry at 3,3 a 1.
Toque para ver mais passagens...
Etapa 4.5.1
Multiply each element of R3 by -29 to make the entry at 3,3 a 1.
[103212000120012-290-290-29(-92)-29(-32)-291-290]
Etapa 4.5.2
Simplifique R3.
[10321200012001200113-290]
[10321200012001200113-290]
Etapa 4.6
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
Toque para ver mais passagens...
Etapa 4.6.1
Perform the row operation R2=R2-2R3 to make the entry at 2,3 a 0.
[103212000-201-202-210-2(13)0-2(-29)12-2000113-290]
Etapa 4.6.2
Simplifique R2.
[10321200010-23491200113-290]
[10321200010-23491200113-290]
Etapa 4.7
Perform the row operation R1=R1-32R3 to make the entry at 1,3 a 0.
Toque para ver mais passagens...
Etapa 4.7.1
Perform the row operation R1=R1-32R3 to make the entry at 1,3 a 0.
[1-3200-32032-32112-32130-32(-29)0-320010-23491200113-290]
Etapa 4.7.2
Simplifique R1.
[1000130010-23491200113-290]
[1000130010-23491200113-290]
[1000130010-23491200113-290]
Etapa 5
The right half of the reduced row echelon form is the inverse.
[0130-23491213-290]
Insira SEU problema
O Mathway requer o JavaScript e um navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay