Álgebra linear Exemplos

[330103020]330103020
Etapa 1
Find the determinant.
Toque para ver mais passagens...
Etapa 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 33 by its cofactor and add.
Toque para ver mais passagens...
Etapa 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 1.1.3
The minor for a31a31 is the determinant with row 33 and column 11 deleted.
|3003|3003
Etapa 1.1.4
Multiply element a31a31 by its cofactor.
0|3003|03003
Etapa 1.1.5
The minor for a32a32 is the determinant with row 33 and column 22 deleted.
|3013|3013
Etapa 1.1.6
Multiply element a32a32 by its cofactor.
-2|3013|23013
Etapa 1.1.7
The minor for a33a33 is the determinant with row 33 and column 33 deleted.
|3310|3310
Etapa 1.1.8
Multiply element a33a33 by its cofactor.
0|3310|03310
Etapa 1.1.9
Add the terms together.
0|3003|-2|3013|+0|3310|0300323013+03310
0|3003|-2|3013|+0|3310|0300323013+03310
Etapa 1.2
Multiplique 00 por |3003|3003.
0-2|3013|+0|3310|023013+03310
Etapa 1.3
Multiplique 00 por |3310|3310.
0-2|3013|+0023013+0
Etapa 1.4
Avalie |3013|3013.
Toque para ver mais passagens...
Etapa 1.4.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
0-2(33-10)+002(3310)+0
Etapa 1.4.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.4.2.1
Multiplique 33 por 33.
0-2(9-10)+002(910)+0
Etapa 1.4.2.2
Subtraia 00 de 99.
0-29+0029+0
0-29+0029+0
0-29+0029+0
Etapa 1.5
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.5.1
Multiplique -22 por 99.
0-18+0018+0
Etapa 1.5.2
Subtraia 1818 de 00.
-18+018+0
Etapa 1.5.3
Some -1818 e 00.
-1818
-1818
-1818
Etapa 2
Since the determinant is non-zero, the inverse exists.
Etapa 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[330100103010020001]330100103010020001
Etapa 4
Encontre a forma escalonada reduzida por linhas.
Toque para ver mais passagens...
Etapa 4.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
Toque para ver mais passagens...
Etapa 4.1.1
Multiply each element of R1R1 by 1313 to make the entry at 1,11,1 a 11.
[333303130303103010020001]⎢ ⎢333303130303103010020001⎥ ⎥
Etapa 4.1.2
Simplifique R1R1.
[1101300103010020001]⎢ ⎢1101300103010020001⎥ ⎥
[1101300103010020001]⎢ ⎢1101300103010020001⎥ ⎥
Etapa 4.2
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
Toque para ver mais passagens...
Etapa 4.2.1
Perform the row operation R2=R2-R1R2=R2R1 to make the entry at 2,12,1 a 00.
[11013001-10-13-00-131-00-0020001]⎢ ⎢11013001101300131000020001⎥ ⎥
Etapa 4.2.2
Simplifique R2R2.
[11013000-13-1310020001]⎢ ⎢11013000131310020001⎥ ⎥
[11013000-13-1310020001]⎢ ⎢11013000131310020001⎥ ⎥
Etapa 4.3
Multiply each element of R2R2 by -11 to make the entry at 2,22,2 a 11.
Toque para ver mais passagens...
Etapa 4.3.1
Multiply each element of R2R2 by -11 to make the entry at 2,22,2 a 11.
[1101300-0--1-13--13-11-0020001]⎢ ⎢1101300011313110020001⎥ ⎥
Etapa 4.3.2
Simplifique R2R2.
[110130001-313-10020001]⎢ ⎢11013000131310020001⎥ ⎥
[110130001-313-10020001]⎢ ⎢11013000131310020001⎥ ⎥
Etapa 4.4
Perform the row operation R3=R3-2R2R3=R32R2 to make the entry at 3,23,2 a 00.
Toque para ver mais passagens...
Etapa 4.4.1
Perform the row operation R3=R3-2R2R3=R32R2 to make the entry at 3,23,2 a 00.
[110130001-313-100-202-210-2-30-2(13)0-2-11-20]⎢ ⎢ ⎢ ⎢1101300013131002022102302(13)021120⎥ ⎥ ⎥ ⎥
Etapa 4.4.2
Simplifique R3R3.
[110130001-313-10006-2321]⎢ ⎢ ⎢110130001313100062321⎥ ⎥ ⎥
[110130001-313-10006-2321]⎢ ⎢ ⎢110130001313100062321⎥ ⎥ ⎥
Etapa 4.5
Multiply each element of R3R3 by 1616 to make the entry at 3,33,3 a 11.
Toque para ver mais passagens...
Etapa 4.5.1
Multiply each element of R3R3 by 1616 to make the entry at 3,33,3 a 11.
[110130001-313-10060666-2362616]⎢ ⎢ ⎢ ⎢110130001313100606662362616⎥ ⎥ ⎥ ⎥
Etapa 4.5.2
Simplifique R3R3.
[110130001-313-10001-191316]⎢ ⎢ ⎢11013000131310001191316⎥ ⎥ ⎥
[110130001-313-10001-191316]⎢ ⎢ ⎢11013000131310001191316⎥ ⎥ ⎥
Etapa 4.6
Perform the row operation R2=R2+3R3R2=R2+3R3 to make the entry at 2,32,3 a 00.
Toque para ver mais passagens...
Etapa 4.6.1
Perform the row operation R2=R2+3R3R2=R2+3R3 to make the entry at 2,32,3 a 00.
[11013000+301+30-3+3113+3(-19)-1+3(13)0+3(16)001-191316]⎢ ⎢ ⎢ ⎢11013000+301+303+3113+3(19)1+3(13)0+3(16)001191316⎥ ⎥ ⎥ ⎥
Etapa 4.6.2
Simplifique R2R2.
[11013000100012001-191316]⎢ ⎢ ⎢11013000100012001191316⎥ ⎥ ⎥
[11013000100012001-191316]⎢ ⎢ ⎢11013000100012001191316⎥ ⎥ ⎥
Etapa 4.7
Perform the row operation R1=R1-R2R1=R1R2 to make the entry at 1,21,2 a 00.
Toque para ver mais passagens...
Etapa 4.7.1
Perform the row operation R1=R1-R2R1=R1R2 to make the entry at 1,21,2 a 00.
[1-01-10-013-00-00-120100012001-191316]⎢ ⎢ ⎢101100130000120100012001191316⎥ ⎥ ⎥
Etapa 4.7.2
Simplifique R1R1.
[100130-120100012001-191316]⎢ ⎢ ⎢100130120100012001191316⎥ ⎥ ⎥
[100130-120100012001-191316]⎢ ⎢ ⎢100130120100012001191316⎥ ⎥ ⎥
[100130-120100012001-191316]⎢ ⎢ ⎢100130120100012001191316⎥ ⎥ ⎥
Etapa 5
The right half of the reduced row echelon form is the inverse.
[130-120012-191316]⎢ ⎢ ⎢130120012191316⎥ ⎥ ⎥
Insira SEU problema
using Amazon.Auth.AccessControlPolicy;
O Mathway requer o JavaScript e um navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay