Álgebra linear Exemplos
⎡⎢
⎢
⎢
⎢⎣0121110210100211⎤⎥
⎥
⎥
⎥⎦
Etapa 1
Etapa 1.1
Consider the corresponding sign chart.
∣∣
∣
∣
∣∣+−+−−+−++−+−−+−+∣∣
∣
∣
∣∣
Etapa 1.2
The cofactor is the minor with the sign changed if the indices match a − position on the sign chart.
Etapa 1.3
The minor for a11 is the determinant with row 1 and column 1 deleted.
∣∣
∣∣102010211∣∣
∣∣
Etapa 1.4
Multiply element a11 by its cofactor.
0∣∣
∣∣102010211∣∣
∣∣
Etapa 1.5
The minor for a21 is the determinant with row 2 and column 1 deleted.
∣∣
∣∣121010211∣∣
∣∣
Etapa 1.6
Multiply element a21 by its cofactor.
−1∣∣
∣∣121010211∣∣
∣∣
Etapa 1.7
The minor for a31 is the determinant with row 3 and column 1 deleted.
∣∣
∣∣121102211∣∣
∣∣
Etapa 1.8
Multiply element a31 by its cofactor.
1∣∣
∣∣121102211∣∣
∣∣
Etapa 1.9
The minor for a41 is the determinant with row 4 and column 1 deleted.
∣∣
∣∣121102010∣∣
∣∣
Etapa 1.10
Multiply element a41 by its cofactor.
0∣∣
∣∣121102010∣∣
∣∣
Etapa 1.11
Add the terms together.
0∣∣
∣∣102010211∣∣
∣∣−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
0∣∣
∣∣102010211∣∣
∣∣−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
Etapa 2
Multiplique 0 por ∣∣
∣∣102010211∣∣
∣∣.
0−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0∣∣
∣∣121102010∣∣
∣∣
Etapa 3
Multiplique 0 por ∣∣
∣∣121102010∣∣
∣∣.
0−1∣∣
∣∣121010211∣∣
∣∣+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4
Etapa 4.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Etapa 4.1.1
Consider the corresponding sign chart.
∣∣
∣∣+−+−+−+−+∣∣
∣∣
Etapa 4.1.2
The cofactor is the minor with the sign changed if the indices match a − position on the sign chart.
Etapa 4.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
∣∣∣2111∣∣∣
Etapa 4.1.4
Multiply element a21 by its cofactor.
0∣∣∣2111∣∣∣
Etapa 4.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
∣∣∣1121∣∣∣
Etapa 4.1.6
Multiply element a22 by its cofactor.
1∣∣∣1121∣∣∣
Etapa 4.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
∣∣∣1221∣∣∣
Etapa 4.1.8
Multiply element a23 by its cofactor.
0∣∣∣1221∣∣∣
Etapa 4.1.9
Add the terms together.
0−1(0∣∣∣2111∣∣∣+1∣∣∣1121∣∣∣+0∣∣∣1221∣∣∣)+1∣∣
∣∣121102211∣∣
∣∣+0
0−1(0∣∣∣2111∣∣∣+1∣∣∣1121∣∣∣+0∣∣∣1221∣∣∣)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.2
Multiplique 0 por ∣∣∣2111∣∣∣.
0−1(0+1∣∣∣1121∣∣∣+0∣∣∣1221∣∣∣)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.3
Multiplique 0 por ∣∣∣1221∣∣∣.
0−1(0+1∣∣∣1121∣∣∣+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.4
Avalie ∣∣∣1121∣∣∣.
Etapa 4.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−1(0+1(1⋅1−2⋅1)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.4.2
Simplifique o determinante.
Etapa 4.4.2.1
Simplifique cada termo.
Etapa 4.4.2.1.1
Multiplique 1 por 1.
0−1(0+1(1−2⋅1)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.4.2.1.2
Multiplique −2 por 1.
0−1(0+1(1−2)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
0−1(0+1(1−2)+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.4.2.2
Subtraia 2 de 1.
0−1(0+1⋅−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
0−1(0+1⋅−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
0−1(0+1⋅−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.5
Simplifique o determinante.
Etapa 4.5.1
Multiplique −1 por 1.
0−1(0−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.5.2
Subtraia 1 de 0.
0−1(−1+0)+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 4.5.3
Some −1 e 0.
0−1⋅−1+1∣∣
∣∣121102211∣∣
∣∣+0
0−1⋅−1+1∣∣
∣∣121102211∣∣
∣∣+0
0−1⋅−1+1∣∣
∣∣121102211∣∣
∣∣+0
Etapa 5
Etapa 5.1
Choose the row or column with the most 0 elements. If there are no 0 elements choose any row or column. Multiply every element in row 2 by its cofactor and add.
Etapa 5.1.1
Consider the corresponding sign chart.
∣∣
∣∣+−+−+−+−+∣∣
∣∣
Etapa 5.1.2
The cofactor is the minor with the sign changed if the indices match a − position on the sign chart.
Etapa 5.1.3
The minor for a21 is the determinant with row 2 and column 1 deleted.
∣∣∣2111∣∣∣
Etapa 5.1.4
Multiply element a21 by its cofactor.
−1∣∣∣2111∣∣∣
Etapa 5.1.5
The minor for a22 is the determinant with row 2 and column 2 deleted.
∣∣∣1121∣∣∣
Etapa 5.1.6
Multiply element a22 by its cofactor.
0∣∣∣1121∣∣∣
Etapa 5.1.7
The minor for a23 is the determinant with row 2 and column 3 deleted.
∣∣∣1221∣∣∣
Etapa 5.1.8
Multiply element a23 by its cofactor.
−2∣∣∣1221∣∣∣
Etapa 5.1.9
Add the terms together.
0−1⋅−1+1(−1∣∣∣2111∣∣∣+0∣∣∣1121∣∣∣−2∣∣∣1221∣∣∣)+0
0−1⋅−1+1(−1∣∣∣2111∣∣∣+0∣∣∣1121∣∣∣−2∣∣∣1221∣∣∣)+0
Etapa 5.2
Multiplique 0 por ∣∣∣1121∣∣∣.
0−1⋅−1+1(−1∣∣∣2111∣∣∣+0−2∣∣∣1221∣∣∣)+0
Etapa 5.3
Avalie ∣∣∣2111∣∣∣.
Etapa 5.3.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−1⋅−1+1(−1(2⋅1−1⋅1)+0−2∣∣∣1221∣∣∣)+0
Etapa 5.3.2
Simplifique o determinante.
Etapa 5.3.2.1
Simplifique cada termo.
Etapa 5.3.2.1.1
Multiplique 2 por 1.
0−1⋅−1+1(−1(2−1⋅1)+0−2∣∣∣1221∣∣∣)+0
Etapa 5.3.2.1.2
Multiplique −1 por 1.
0−1⋅−1+1(−1(2−1)+0−2∣∣∣1221∣∣∣)+0
0−1⋅−1+1(−1(2−1)+0−2∣∣∣1221∣∣∣)+0
Etapa 5.3.2.2
Subtraia 1 de 2.
0−1⋅−1+1(−1⋅1+0−2∣∣∣1221∣∣∣)+0
0−1⋅−1+1(−1⋅1+0−2∣∣∣1221∣∣∣)+0
0−1⋅−1+1(−1⋅1+0−2∣∣∣1221∣∣∣)+0
Etapa 5.4
Avalie ∣∣∣1221∣∣∣.
Etapa 5.4.1
O determinante de uma matriz 2×2 pode ser encontrado ao usar a fórmula ∣∣∣abcd∣∣∣=ad−cb.
0−1⋅−1+1(−1⋅1+0−2(1⋅1−2⋅2))+0
Etapa 5.4.2
Simplifique o determinante.
Etapa 5.4.2.1
Simplifique cada termo.
Etapa 5.4.2.1.1
Multiplique 1 por 1.
0−1⋅−1+1(−1⋅1+0−2(1−2⋅2))+0
Etapa 5.4.2.1.2
Multiplique −2 por 2.
0−1⋅−1+1(−1⋅1+0−2(1−4))+0
0−1⋅−1+1(−1⋅1+0−2(1−4))+0
Etapa 5.4.2.2
Subtraia 4 de 1.
0−1⋅−1+1(−1⋅1+0−2⋅−3)+0
0−1⋅−1+1(−1⋅1+0−2⋅−3)+0
0−1⋅−1+1(−1⋅1+0−2⋅−3)+0
Etapa 5.5
Simplifique o determinante.
Etapa 5.5.1
Simplifique cada termo.
Etapa 5.5.1.1
Multiplique −1 por 1.
0−1⋅−1+1(−1+0−2⋅−3)+0
Etapa 5.5.1.2
Multiplique −2 por −3.
0−1⋅−1+1(−1+0+6)+0
0−1⋅−1+1(−1+0+6)+0
Etapa 5.5.2
Some −1 e 0.
0−1⋅−1+1(−1+6)+0
Etapa 5.5.3
Some −1 e 6.
0−1⋅−1+1⋅5+0
0−1⋅−1+1⋅5+0
0−1⋅−1+1⋅5+0
Etapa 6
Etapa 6.1
Simplifique cada termo.
Etapa 6.1.1
Multiplique −1 por −1.
0+1+1⋅5+0
Etapa 6.1.2
Multiplique 5 por 1.
0+1+5+0
0+1+5+0
Etapa 6.2
Some 0 e 1.
1+5+0
Etapa 6.3
Some 1 e 5.
6+0
Etapa 6.4
Some 6 e 0.
6
6