Álgebra linear Exemplos
S⎛⎜⎝⎡⎢⎣abc⎤⎥⎦⎞⎟⎠=⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦
Etapa 1
O kernel de uma transformação é um vetor que torna a transformação igual ao vetor zero (a imagem recíproca da transformação).
⎡⎢⎣a−2b−c3a−b+2ca+b+2c⎤⎥⎦=0
Etapa 2
Crie um sistema de equações a partir da equação vetorial.
a−2b−c=0
3a−b+2c=0
a+b+2c=0
Etapa 3
Write the system as a matrix.
⎡⎢
⎢⎣1−2−103−1201120⎤⎥
⎥⎦
Etapa 4
Etapa 4.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
Etapa 4.1.1
Perform the row operation R2=R2−3R1 to make the entry at 2,1 a 0.
⎡⎢
⎢⎣1−2−103−3⋅1−1−3⋅−22−3⋅−10−3⋅01120⎤⎥
⎥⎦
Etapa 4.1.2
Simplifique R2.
⎡⎢
⎢⎣1−2−1005501120⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1005501120⎤⎥
⎥⎦
Etapa 4.2
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
Etapa 4.2.1
Perform the row operation R3=R3−R1 to make the entry at 3,1 a 0.
⎡⎢
⎢⎣1−2−1005501−11+22+10−0⎤⎥
⎥⎦
Etapa 4.2.2
Simplifique R3.
⎡⎢
⎢⎣1−2−1005500330⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1005500330⎤⎥
⎥⎦
Etapa 4.3
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
Etapa 4.3.1
Multiply each element of R2 by 15 to make the entry at 2,2 a 1.
⎡⎢
⎢⎣1−2−10055555050330⎤⎥
⎥⎦
Etapa 4.3.2
Simplifique R2.
⎡⎢
⎢⎣1−2−1001100330⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1001100330⎤⎥
⎥⎦
Etapa 4.4
Perform the row operation R3=R3−3R2 to make the entry at 3,2 a 0.
Etapa 4.4.1
Perform the row operation R3=R3−3R2 to make the entry at 3,2 a 0.
⎡⎢
⎢⎣1−2−1001100−3⋅03−3⋅13−3⋅10−3⋅0⎤⎥
⎥⎦
Etapa 4.4.2
Simplifique R3.
⎡⎢
⎢⎣1−2−1001100000⎤⎥
⎥⎦
⎡⎢
⎢⎣1−2−1001100000⎤⎥
⎥⎦
Etapa 4.5
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
Etapa 4.5.1
Perform the row operation R1=R1+2R2 to make the entry at 1,2 a 0.
⎡⎢
⎢⎣1+2⋅0−2+2⋅1−1+2⋅10+2⋅001100000⎤⎥
⎥⎦
Etapa 4.5.2
Simplifique R1.
⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
⎡⎢
⎢⎣101001100000⎤⎥
⎥⎦
Etapa 5
Use the result matrix to declare the final solution to the system of equations.
a+c=0
b+c=0
0=0
Etapa 6
Write a solution vector by solving in terms of the free variables in each row.
⎡⎢⎣abc⎤⎥⎦=⎡⎢⎣−c−cc⎤⎥⎦
Etapa 7
Write the solution as a linear combination of vectors.
⎡⎢⎣abc⎤⎥⎦=c⎡⎢⎣−1−11⎤⎥⎦
Etapa 8
Write as a solution set.
⎧⎪⎨⎪⎩c⎡⎢⎣−1−11⎤⎥⎦∣∣
∣∣c∈R⎫⎪⎬⎪⎭
Etapa 9
The solution is the set of vectors created from the free variables of the system.
⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭
Etapa 10
O kernel de S é o subespaço ⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭.
K(S)=⎧⎪⎨⎪⎩⎡⎢⎣−1−11⎤⎥⎦⎫⎪⎬⎪⎭