Exemplos
Etapa 1
O kernel de uma transformação é um vetor que torna a transformação igual ao vetor zero (a imagem recíproca da transformação).
Etapa 2
Crie um sistema de equações a partir da equação vetorial.
Etapa 3
Write the system as a matrix.
Etapa 4
Etapa 4.1
Perform the row operation to make the entry at a .
Etapa 4.1.1
Perform the row operation to make the entry at a .
Etapa 4.1.2
Simplifique .
Etapa 4.2
Perform the row operation to make the entry at a .
Etapa 4.2.1
Perform the row operation to make the entry at a .
Etapa 4.2.2
Simplifique .
Etapa 4.3
Multiply each element of by to make the entry at a .
Etapa 4.3.1
Multiply each element of by to make the entry at a .
Etapa 4.3.2
Simplifique .
Etapa 4.4
Perform the row operation to make the entry at a .
Etapa 4.4.1
Perform the row operation to make the entry at a .
Etapa 4.4.2
Simplifique .
Etapa 4.5
Perform the row operation to make the entry at a .
Etapa 4.5.1
Perform the row operation to make the entry at a .
Etapa 4.5.2
Simplifique .
Etapa 5
Use the result matrix to declare the final solution to the system of equations.
Etapa 6
Write a solution vector by solving in terms of the free variables in each row.
Etapa 7
Write the solution as a linear combination of vectors.
Etapa 8
Write as a solution set.
Etapa 9
The solution is the set of vectors created from the free variables of the system.
Etapa 10
O kernel de é o subespaço .