Matemática discreta Exemplos
[440231123]⎡⎢⎣440231123⎤⎥⎦
Etapa 1
Etapa 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Etapa 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣∣
∣∣+−+−+−+−+∣∣
∣∣
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a -− position on the sign chart.
Etapa 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|3123|∣∣∣3123∣∣∣
Etapa 1.1.4
Multiply element a11a11 by its cofactor.
4|3123|4∣∣∣3123∣∣∣
Etapa 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2113|∣∣∣2113∣∣∣
Etapa 1.1.6
Multiply element a12a12 by its cofactor.
-4|2113|−4∣∣∣2113∣∣∣
Etapa 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2312|∣∣∣2312∣∣∣
Etapa 1.1.8
Multiply element a13a13 by its cofactor.
0|2312|0∣∣∣2312∣∣∣
Etapa 1.1.9
Add the terms together.
4|3123|-4|2113|+0|2312|4∣∣∣3123∣∣∣−4∣∣∣2113∣∣∣+0∣∣∣2312∣∣∣
4|3123|-4|2113|+0|2312|4∣∣∣3123∣∣∣−4∣∣∣2113∣∣∣+0∣∣∣2312∣∣∣
Etapa 1.2
Multiplique 00 por |2312|∣∣∣2312∣∣∣.
4|3123|-4|2113|+04∣∣∣3123∣∣∣−4∣∣∣2113∣∣∣+0
Etapa 1.3
Avalie |3123|∣∣∣3123∣∣∣.
Etapa 1.3.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
4(3⋅3-2⋅1)-4|2113|+04(3⋅3−2⋅1)−4∣∣∣2113∣∣∣+0
Etapa 1.3.2
Simplifique o determinante.
Etapa 1.3.2.1
Simplifique cada termo.
Etapa 1.3.2.1.1
Multiplique 33 por 33.
4(9-2⋅1)-4|2113|+04(9−2⋅1)−4∣∣∣2113∣∣∣+0
Etapa 1.3.2.1.2
Multiplique -2−2 por 11.
4(9-2)-4|2113|+04(9−2)−4∣∣∣2113∣∣∣+0
4(9-2)-4|2113|+04(9−2)−4∣∣∣2113∣∣∣+0
Etapa 1.3.2.2
Subtraia 22 de 99.
4⋅7-4|2113|+04⋅7−4∣∣∣2113∣∣∣+0
4⋅7-4|2113|+04⋅7−4∣∣∣2113∣∣∣+0
4⋅7-4|2113|+04⋅7−4∣∣∣2113∣∣∣+0
Etapa 1.4
Avalie |2113|∣∣∣2113∣∣∣.
Etapa 1.4.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cb∣∣∣abcd∣∣∣=ad−cb.
4⋅7-4(2⋅3-1⋅1)+04⋅7−4(2⋅3−1⋅1)+0
Etapa 1.4.2
Simplifique o determinante.
Etapa 1.4.2.1
Simplifique cada termo.
Etapa 1.4.2.1.1
Multiplique 22 por 33.
4⋅7-4(6-1⋅1)+04⋅7−4(6−1⋅1)+0
Etapa 1.4.2.1.2
Multiplique -1−1 por 11.
4⋅7-4(6-1)+04⋅7−4(6−1)+0
4⋅7-4(6-1)+04⋅7−4(6−1)+0
Etapa 1.4.2.2
Subtraia 11 de 66.
4⋅7-4⋅5+04⋅7−4⋅5+0
4⋅7-4⋅5+04⋅7−4⋅5+0
4⋅7-4⋅5+04⋅7−4⋅5+0
Etapa 1.5
Simplifique o determinante.
Etapa 1.5.1
Simplifique cada termo.
Etapa 1.5.1.1
Multiplique 44 por 77.
28-4⋅5+028−4⋅5+0
Etapa 1.5.1.2
Multiplique -4−4 por 55.
28-20+028−20+0
28-20+028−20+0
Etapa 1.5.2
Subtraia 2020 de 2828.
8+08+0
Etapa 1.5.3
Some 88 e 00.
88
88
88
Etapa 2
Since the determinant is non-zero, the inverse exists.
Etapa 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[440100231010123001]⎡⎢⎣440100231010123001⎤⎥⎦
Etapa 4
Etapa 4.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
Etapa 4.1.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[444404140404231010123001]⎡⎢
⎢⎣444404140404231010123001⎤⎥
⎥⎦
Etapa 4.1.2
Simplifique R1R1.
[1101400231010123001]⎡⎢
⎢⎣1101400231010123001⎤⎥
⎥⎦
[1101400231010123001]⎡⎢
⎢⎣1101400231010123001⎤⎥
⎥⎦
Etapa 4.2
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
Etapa 4.2.1
Perform the row operation R2=R2-2R1R2=R2−2R1 to make the entry at 2,12,1 a 00.
[11014002-2⋅13-2⋅11-2⋅00-2(14)1-2⋅00-2⋅0123001]⎡⎢
⎢⎣11014002−2⋅13−2⋅11−2⋅00−2(14)1−2⋅00−2⋅0123001⎤⎥
⎥⎦
Etapa 4.2.2
Simplifique R2R2.
[1101400011-1210123001]⎡⎢
⎢⎣1101400011−1210123001⎤⎥
⎥⎦
[1101400011-1210123001]⎡⎢
⎢⎣1101400011−1210123001⎤⎥
⎥⎦
Etapa 4.3
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
Etapa 4.3.1
Perform the row operation R3=R3-R1R3=R3−R1 to make the entry at 3,13,1 a 00.
[1101400011-12101-12-13-00-140-01-0]⎡⎢
⎢
⎢⎣1101400011−12101−12−13−00−140−01−0⎤⎥
⎥
⎥⎦
Etapa 4.3.2
Simplifique R3R3.
[1101400011-1210013-1401]⎡⎢
⎢
⎢⎣1101400011−1210013−1401⎤⎥
⎥
⎥⎦
[1101400011-1210013-1401]⎡⎢
⎢
⎢⎣1101400011−1210013−1401⎤⎥
⎥
⎥⎦
Etapa 4.4
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
Etapa 4.4.1
Perform the row operation R3=R3-R2R3=R3−R2 to make the entry at 3,23,2 a 00.
[1101400011-12100-01-13-1-14+120-11-0]⎡⎢
⎢
⎢⎣1101400011−12100−01−13−1−14+120−11−0⎤⎥
⎥
⎥⎦
Etapa 4.4.2
Simplifique R3R3.
[1101400011-121000214-11]⎡⎢
⎢
⎢⎣1101400011−121000214−11⎤⎥
⎥
⎥⎦
[1101400011-121000214-11]⎡⎢
⎢
⎢⎣1101400011−121000214−11⎤⎥
⎥
⎥⎦
Etapa 4.5
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
Etapa 4.5.1
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
[1101400011-1210020222142-1212]⎡⎢
⎢
⎢
⎢⎣1101400011−1210020222142−1212⎤⎥
⎥
⎥
⎥⎦
Etapa 4.5.2
Simplifique R3R3.
[1101400011-121000118-1212]⎡⎢
⎢
⎢⎣1101400011−121000118−1212⎤⎥
⎥
⎥⎦
[1101400011-121000118-1212]⎡⎢
⎢
⎢⎣1101400011−121000118−1212⎤⎥
⎥
⎥⎦
Etapa 4.6
Perform the row operation R2=R2-R3R2=R2−R3 to make the entry at 2,32,3 a 00.
Etapa 4.6.1
Perform the row operation R2=R2-R3R2=R2−R3 to make the entry at 2,32,3 a 00.
[11014000-01-01-1-12-181+120-1200118-1212]⎡⎢
⎢
⎢⎣11014000−01−01−1−12−181+120−1200118−1212⎤⎥
⎥
⎥⎦
Etapa 4.6.2
Simplifique R2R2.
[1101400010-5832-1200118-1212]⎡⎢
⎢
⎢⎣1101400010−5832−1200118−1212⎤⎥
⎥
⎥⎦
[1101400010-5832-1200118-1212]
Etapa 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Etapa 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-014+580-320+12010-5832-1200118-1212]
Etapa 4.7.2
Simplifique R1.
[10078-3212010-5832-1200118-1212]
[10078-3212010-5832-1200118-1212]
[10078-3212010-5832-1200118-1212]
Etapa 5
The right half of the reduced row echelon form is the inverse.
[78-3212-5832-1218-1212]