Matemática discreta Exemplos

[440231123]440231123
Etapa 1
Find the determinant.
Toque para ver mais passagens...
Etapa 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Toque para ver mais passagens...
Etapa 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|3123|3123
Etapa 1.1.4
Multiply element a11a11 by its cofactor.
4|3123|43123
Etapa 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|2113|2113
Etapa 1.1.6
Multiply element a12a12 by its cofactor.
-4|2113|42113
Etapa 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|2312|2312
Etapa 1.1.8
Multiply element a13a13 by its cofactor.
0|2312|02312
Etapa 1.1.9
Add the terms together.
4|3123|-4|2113|+0|2312|4312342113+02312
4|3123|-4|2113|+0|2312|4312342113+02312
Etapa 1.2
Multiplique 00 por |2312|2312.
4|3123|-4|2113|+04312342113+0
Etapa 1.3
Avalie |3123|3123.
Toque para ver mais passagens...
Etapa 1.3.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
4(33-21)-4|2113|+04(3321)42113+0
Etapa 1.3.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.2.1.1
Multiplique 33 por 33.
4(9-21)-4|2113|+04(921)42113+0
Etapa 1.3.2.1.2
Multiplique -22 por 11.
4(9-2)-4|2113|+04(92)42113+0
4(9-2)-4|2113|+04(92)42113+0
Etapa 1.3.2.2
Subtraia 22 de 99.
47-4|2113|+04742113+0
47-4|2113|+04742113+0
47-4|2113|+04742113+0
Etapa 1.4
Avalie |2113|2113.
Toque para ver mais passagens...
Etapa 1.4.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
47-4(23-11)+0474(2311)+0
Etapa 1.4.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.1.1
Multiplique 22 por 33.
47-4(6-11)+0474(611)+0
Etapa 1.4.2.1.2
Multiplique -11 por 11.
47-4(6-1)+0474(61)+0
47-4(6-1)+0474(61)+0
Etapa 1.4.2.2
Subtraia 11 de 66.
47-45+04745+0
47-45+04745+0
47-45+04745+0
Etapa 1.5
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.5.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.5.1.1
Multiplique 44 por 77.
28-45+02845+0
Etapa 1.5.1.2
Multiplique -44 por 55.
28-20+02820+0
28-20+02820+0
Etapa 1.5.2
Subtraia 2020 de 2828.
8+08+0
Etapa 1.5.3
Some 88 e 00.
88
88
88
Etapa 2
Since the determinant is non-zero, the inverse exists.
Etapa 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[440100231010123001]440100231010123001
Etapa 4
Encontre a forma escalonada reduzida por linhas.
Toque para ver mais passagens...
Etapa 4.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
Toque para ver mais passagens...
Etapa 4.1.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[444404140404231010123001]⎢ ⎢444404140404231010123001⎥ ⎥
Etapa 4.1.2
Simplifique R1R1.
[1101400231010123001]⎢ ⎢1101400231010123001⎥ ⎥
[1101400231010123001]⎢ ⎢1101400231010123001⎥ ⎥
Etapa 4.2
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
Toque para ver mais passagens...
Etapa 4.2.1
Perform the row operation R2=R2-2R1R2=R22R1 to make the entry at 2,12,1 a 00.
[11014002-213-211-200-2(14)1-200-20123001]⎢ ⎢110140022132112002(14)120020123001⎥ ⎥
Etapa 4.2.2
Simplifique R2R2.
[1101400011-1210123001]⎢ ⎢11014000111210123001⎥ ⎥
[1101400011-1210123001]⎢ ⎢11014000111210123001⎥ ⎥
Etapa 4.3
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
Toque para ver mais passagens...
Etapa 4.3.1
Perform the row operation R3=R3-R1R3=R3R1 to make the entry at 3,13,1 a 00.
[1101400011-12101-12-13-00-140-01-0]⎢ ⎢ ⎢110140001112101121300140010⎥ ⎥ ⎥
Etapa 4.3.2
Simplifique R3R3.
[1101400011-1210013-1401]⎢ ⎢ ⎢110140001112100131401⎥ ⎥ ⎥
[1101400011-1210013-1401]⎢ ⎢ ⎢110140001112100131401⎥ ⎥ ⎥
Etapa 4.4
Perform the row operation R3=R3-R2R3=R3R2 to make the entry at 3,23,2 a 00.
Toque para ver mais passagens...
Etapa 4.4.1
Perform the row operation R3=R3-R2R3=R3R2 to make the entry at 3,23,2 a 00.
[1101400011-12100-01-13-1-14+120-11-0]⎢ ⎢ ⎢1101400011121000113114+120110⎥ ⎥ ⎥
Etapa 4.4.2
Simplifique R3R3.
[1101400011-121000214-11]⎢ ⎢ ⎢110140001112100021411⎥ ⎥ ⎥
[1101400011-121000214-11]⎢ ⎢ ⎢110140001112100021411⎥ ⎥ ⎥
Etapa 4.5
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
Toque para ver mais passagens...
Etapa 4.5.1
Multiply each element of R3R3 by 1212 to make the entry at 3,33,3 a 11.
[1101400011-1210020222142-1212]⎢ ⎢ ⎢ ⎢110140001112100202221421212⎥ ⎥ ⎥ ⎥
Etapa 4.5.2
Simplifique R3R3.
[1101400011-121000118-1212]⎢ ⎢ ⎢11014000111210001181212⎥ ⎥ ⎥
[1101400011-121000118-1212]⎢ ⎢ ⎢11014000111210001181212⎥ ⎥ ⎥
Etapa 4.6
Perform the row operation R2=R2-R3R2=R2R3 to make the entry at 2,32,3 a 00.
Toque para ver mais passagens...
Etapa 4.6.1
Perform the row operation R2=R2-R3R2=R2R3 to make the entry at 2,32,3 a 00.
[11014000-01-01-1-12-181+120-1200118-1212]⎢ ⎢ ⎢110140000101112181+12012001181212⎥ ⎥ ⎥
Etapa 4.6.2
Simplifique R2R2.
[1101400010-5832-1200118-1212]⎢ ⎢ ⎢1101400010583212001181212⎥ ⎥ ⎥
[1101400010-5832-1200118-1212]
Etapa 4.7
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Toque para ver mais passagens...
Etapa 4.7.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-014+580-320+12010-5832-1200118-1212]
Etapa 4.7.2
Simplifique R1.
[10078-3212010-5832-1200118-1212]
[10078-3212010-5832-1200118-1212]
[10078-3212010-5832-1200118-1212]
Etapa 5
The right half of the reduced row echelon form is the inverse.
[78-3212-5832-1218-1212]
Insira SEU problema
using Amazon.Auth.AccessControlPolicy;
O Mathway requer o JavaScript e um navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay