Exemplos
Etapa 1
O kernel de uma transformação é um vetor que torna a transformação igual ao vetor zero (a imagem recíproca da transformação).
Etapa 2
Crie um sistema de equações a partir da equação vetorial.
Etapa 3
Write the system as a matrix.
Etapa 4
Etapa 4.1
Perform the row operation to make the entry at a .
Etapa 4.1.1
Perform the row operation to make the entry at a .
Etapa 4.1.2
Simplifique .
Etapa 4.2
Perform the row operation to make the entry at a .
Etapa 4.2.1
Perform the row operation to make the entry at a .
Etapa 4.2.2
Simplifique .
Etapa 4.3
Multiply each element of by to make the entry at a .
Etapa 4.3.1
Multiply each element of by to make the entry at a .
Etapa 4.3.2
Simplifique .
Etapa 4.4
Perform the row operation to make the entry at a .
Etapa 4.4.1
Perform the row operation to make the entry at a .
Etapa 4.4.2
Simplifique .
Etapa 4.5
Multiply each element of by to make the entry at a .
Etapa 4.5.1
Multiply each element of by to make the entry at a .
Etapa 4.5.2
Simplifique .
Etapa 4.6
Perform the row operation to make the entry at a .
Etapa 4.6.1
Perform the row operation to make the entry at a .
Etapa 4.6.2
Simplifique .
Etapa 4.7
Perform the row operation to make the entry at a .
Etapa 4.7.1
Perform the row operation to make the entry at a .
Etapa 4.7.2
Simplifique .
Etapa 4.8
Perform the row operation to make the entry at a .
Etapa 4.8.1
Perform the row operation to make the entry at a .
Etapa 4.8.2
Simplifique .
Etapa 5
Use the result matrix to declare the final solution to the system of equations.
Etapa 6
Write a solution vector by solving in terms of the free variables in each row.
Etapa 7
Write as a solution set.
Etapa 8
O kernel de é o subespaço .