Cálculo Exemplos
Etapa 1
Diferencie os dois lados da equação.
Etapa 2
A derivada de em relação a é .
Etapa 3
Etapa 3.1
Diferencie.
Etapa 3.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2
Avalie .
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Avalie .
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3
Multiplique por .
Etapa 3.4
Reordene os termos.
Etapa 4
Reformule a equação definindo o lado esquerdo igual ao lado direito.
Etapa 5
Substitua por .
Etapa 6
Etapa 6.1
Fatore usando o teste das raízes racionais.
Etapa 6.1.1
Se uma função polinomial tiver coeficientes inteiros, então todo zero racional terá a forma , em que é um fator da constante e é um fator do coeficiente de maior ordem.
Etapa 6.1.2
Encontre todas as combinações de . Essas são as raízes possíveis da função polinomial.
Etapa 6.1.3
Substitua e simplifique a expressão. Nesse caso, a expressão é igual a . Portanto, é uma raiz do polinômio.
Etapa 6.1.3.1
Substitua no polinômio.
Etapa 6.1.3.2
Eleve à potência de .
Etapa 6.1.3.3
Multiplique por .
Etapa 6.1.3.4
Multiplique por .
Etapa 6.1.3.5
Some e .
Etapa 6.1.3.6
Some e .
Etapa 6.1.4
Como é uma raiz conhecida, divida o polinômio por para encontrar o polinômio do quociente. Então, esse polinômio pode ser usado para encontrar as raízes restantes.
Etapa 6.1.5
Divida por .
Etapa 6.1.5.1
Estabeleça os polinômios a serem divididos. Se não houver um termo para cada expoente, insira um com valor de .
+ | + | - | + |
Etapa 6.1.5.2
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
+ | + | - | + |
Etapa 6.1.5.3
Multiplique o novo termo do quociente pelo divisor.
+ | + | - | + | ||||||||
+ | + |
Etapa 6.1.5.4
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
+ | + | - | + | ||||||||
- | - |
Etapa 6.1.5.5
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
+ | + | - | + | ||||||||
- | - | ||||||||||
- |
Etapa 6.1.5.6
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - |
Etapa 6.1.5.7
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
- | |||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - |
Etapa 6.1.5.8
Multiplique o novo termo do quociente pelo divisor.
- | |||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
- | - |
Etapa 6.1.5.9
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
- | |||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + |
Etapa 6.1.5.10
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
- | |||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ |
Etapa 6.1.5.11
Tire os próximos termos do dividendo original e os coloque no dividendo atual.
- | |||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Etapa 6.1.5.12
Divida o termo de ordem mais alta no dividendo pelo termo de ordem mais alta no divisor .
- | + | ||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + |
Etapa 6.1.5.13
Multiplique o novo termo do quociente pelo divisor.
- | + | ||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Etapa 6.1.5.14
A expressão precisa ser subtraída do dividendo. Portanto, altere todos os sinais em .
- | + | ||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Etapa 6.1.5.15
Depois de alterar os sinais, some o último dividendo do polinômio multiplicado para encontrar o novo dividendo.
- | + | ||||||||||
+ | + | - | + | ||||||||
- | - | ||||||||||
- | - | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Etapa 6.1.5.16
Já que o resto é , a resposta final é o quociente.
Etapa 6.1.6
Escreva como um conjunto de fatores.
Etapa 6.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 6.3
Defina como igual a e resolva para .
Etapa 6.3.1
Defina como igual a .
Etapa 6.3.2
Resolva para .
Etapa 6.3.2.1
Subtraia dos dois lados da equação.
Etapa 6.3.2.2
Divida cada termo em por e simplifique.
Etapa 6.3.2.2.1
Divida cada termo em por .
Etapa 6.3.2.2.2
Simplifique o lado esquerdo.
Etapa 6.3.2.2.2.1
Cancele o fator comum de .
Etapa 6.3.2.2.2.1.1
Cancele o fator comum.
Etapa 6.3.2.2.2.1.2
Divida por .
Etapa 6.3.2.2.3
Simplifique o lado direito.
Etapa 6.3.2.2.3.1
Mova o número negativo para a frente da fração.
Etapa 6.4
Defina como igual a e resolva para .
Etapa 6.4.1
Defina como igual a .
Etapa 6.4.2
Resolva para .
Etapa 6.4.2.1
Use a fórmula quadrática para encontrar as soluções.
Etapa 6.4.2.2
Substitua os valores , e na fórmula quadrática e resolva .
Etapa 6.4.2.3
Simplifique.
Etapa 6.4.2.3.1
Simplifique o numerador.
Etapa 6.4.2.3.1.1
Eleve à potência de .
Etapa 6.4.2.3.1.2
Multiplique .
Etapa 6.4.2.3.1.2.1
Multiplique por .
Etapa 6.4.2.3.1.2.2
Multiplique por .
Etapa 6.4.2.3.1.3
Subtraia de .
Etapa 6.4.2.3.1.4
Reescreva como .
Etapa 6.4.2.3.1.5
Reescreva como .
Etapa 6.4.2.3.1.6
Reescreva como .
Etapa 6.4.2.3.1.7
Reescreva como .
Etapa 6.4.2.3.1.8
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.4.2.3.1.9
Mova para a esquerda de .
Etapa 6.4.2.3.2
Multiplique por .
Etapa 6.4.2.3.3
Simplifique .
Etapa 6.4.2.4
Simplifique a expressão para resolver a parte de .
Etapa 6.4.2.4.1
Simplifique o numerador.
Etapa 6.4.2.4.1.1
Eleve à potência de .
Etapa 6.4.2.4.1.2
Multiplique .
Etapa 6.4.2.4.1.2.1
Multiplique por .
Etapa 6.4.2.4.1.2.2
Multiplique por .
Etapa 6.4.2.4.1.3
Subtraia de .
Etapa 6.4.2.4.1.4
Reescreva como .
Etapa 6.4.2.4.1.5
Reescreva como .
Etapa 6.4.2.4.1.6
Reescreva como .
Etapa 6.4.2.4.1.7
Reescreva como .
Etapa 6.4.2.4.1.8
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.4.2.4.1.9
Mova para a esquerda de .
Etapa 6.4.2.4.2
Multiplique por .
Etapa 6.4.2.4.3
Simplifique .
Etapa 6.4.2.4.4
Altere para .
Etapa 6.4.2.4.5
Divida a fração em duas frações.
Etapa 6.4.2.5
Simplifique a expressão para resolver a parte de .
Etapa 6.4.2.5.1
Simplifique o numerador.
Etapa 6.4.2.5.1.1
Eleve à potência de .
Etapa 6.4.2.5.1.2
Multiplique .
Etapa 6.4.2.5.1.2.1
Multiplique por .
Etapa 6.4.2.5.1.2.2
Multiplique por .
Etapa 6.4.2.5.1.3
Subtraia de .
Etapa 6.4.2.5.1.4
Reescreva como .
Etapa 6.4.2.5.1.5
Reescreva como .
Etapa 6.4.2.5.1.6
Reescreva como .
Etapa 6.4.2.5.1.7
Reescreva como .
Etapa 6.4.2.5.1.8
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 6.4.2.5.1.9
Mova para a esquerda de .
Etapa 6.4.2.5.2
Multiplique por .
Etapa 6.4.2.5.3
Simplifique .
Etapa 6.4.2.5.4
Altere para .
Etapa 6.4.2.5.5
Divida a fração em duas frações.
Etapa 6.4.2.5.6
Mova o número negativo para a frente da fração.
Etapa 6.4.2.6
A resposta final é a combinação das duas soluções.
Etapa 6.5
A solução final são todos os valores que tornam verdadeiro.
Etapa 7
Etapa 7.1
Remova os parênteses.
Etapa 7.2
Remova os parênteses.
Etapa 7.3
Simplifique .
Etapa 7.3.1
Simplifique cada termo.
Etapa 7.3.1.1
Use a regra da multiplicação de potências para distribuir o expoente.
Etapa 7.3.1.1.1
Aplique a regra do produto a .
Etapa 7.3.1.1.2
Aplique a regra do produto a .
Etapa 7.3.1.2
Multiplique por somando os expoentes.
Etapa 7.3.1.2.1
Mova .
Etapa 7.3.1.2.2
Multiplique por .
Etapa 7.3.1.2.2.1
Eleve à potência de .
Etapa 7.3.1.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 7.3.1.2.3
Some e .
Etapa 7.3.1.3
Eleve à potência de .
Etapa 7.3.1.4
Um elevado a qualquer potência é um.
Etapa 7.3.1.5
Eleve à potência de .
Etapa 7.3.1.6
Use a regra da multiplicação de potências para distribuir o expoente.
Etapa 7.3.1.6.1
Aplique a regra do produto a .
Etapa 7.3.1.6.2
Aplique a regra do produto a .
Etapa 7.3.1.7
Eleve à potência de .
Etapa 7.3.1.8
Multiplique por .
Etapa 7.3.1.9
Um elevado a qualquer potência é um.
Etapa 7.3.1.10
Eleve à potência de .
Etapa 7.3.1.11
Cancele o fator comum de .
Etapa 7.3.1.11.1
Fatore de .
Etapa 7.3.1.11.2
Cancele o fator comum.
Etapa 7.3.1.11.3
Reescreva a expressão.
Etapa 7.3.2
Combine frações.
Etapa 7.3.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 7.3.2.2
Some e .
Etapa 7.3.3
Simplifique cada termo.
Etapa 7.3.3.1
Mova o número negativo para a frente da fração.
Etapa 7.3.3.2
Divida por .
Etapa 7.3.4
Some e .
Etapa 8
Os valores de calculados não contêm componentes imaginários.
não é um valor válido de x
Etapa 9
Os valores de calculados não contêm componentes imaginários.
não é um valor válido de x
Etapa 10
Encontre os pontos em que .
Etapa 11