Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a segunda derivada.
Etapa 1.1.1
Encontre a primeira derivada.
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Avalie .
Etapa 1.1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.3
Multiplique por .
Etapa 1.1.1.3
Avalie .
Etapa 1.1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.3.3
Multiplique por .
Etapa 1.1.1.4
Diferencie usando a regra da constante.
Etapa 1.1.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.4.2
Some e .
Etapa 1.1.2
Encontre a segunda derivada.
Etapa 1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.2
Avalie .
Etapa 1.1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.2.3
Multiplique por .
Etapa 1.1.2.3
Diferencie usando a regra da constante.
Etapa 1.1.2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.3.2
Some e .
Etapa 1.1.3
A segunda derivada de com relação a é .
Etapa 1.2
Defina a segunda derivada como igual a e resolva a equação .
Etapa 1.2.1
Defina a segunda derivada como igual a .
Etapa 1.2.2
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 2
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 3
O gráfico tem concavidade para baixo porque a segunda derivada é negativa.
O gráfico tem concavidade para baixo
Etapa 4