Álgebra Exemplos

[413144441]413144441
Etapa 1
Find the determinant.
Toque para ver mais passagens...
Etapa 1.1
Choose the row or column with the most 00 elements. If there are no 00 elements choose any row or column. Multiply every element in row 11 by its cofactor and add.
Toque para ver mais passagens...
Etapa 1.1.1
Consider the corresponding sign chart.
|+-+-+-+-+|∣ ∣+++++∣ ∣
Etapa 1.1.2
The cofactor is the minor with the sign changed if the indices match a - position on the sign chart.
Etapa 1.1.3
The minor for a11a11 is the determinant with row 11 and column 11 deleted.
|4441|4441
Etapa 1.1.4
Multiply element a11a11 by its cofactor.
4|4441|44441
Etapa 1.1.5
The minor for a12a12 is the determinant with row 11 and column 22 deleted.
|1441|1441
Etapa 1.1.6
Multiply element a12a12 by its cofactor.
-1|1441|11441
Etapa 1.1.7
The minor for a13a13 is the determinant with row 11 and column 33 deleted.
|1444|1444
Etapa 1.1.8
Multiply element a13a13 by its cofactor.
3|1444|31444
Etapa 1.1.9
Add the terms together.
4|4441|-1|1441|+3|1444|4444111441+31444
4|4441|-1|1441|+3|1444|4444111441+31444
Etapa 1.2
Avalie |4441|4441.
Toque para ver mais passagens...
Etapa 1.2.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
4(41-44)-1|1441|+3|1444|4(4144)11441+31444
Etapa 1.2.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.2.2.1.1
Multiplique 44 por 11.
4(4-44)-1|1441|+3|1444|4(444)11441+31444
Etapa 1.2.2.1.2
Multiplique -44 por 44.
4(4-16)-1|1441|+3|1444|4(416)11441+31444
4(4-16)-1|1441|+3|1444|4(416)11441+31444
Etapa 1.2.2.2
Subtraia 1616 de 44.
4-12-1|1441|+3|1444|41211441+31444
4-12-1|1441|+3|1444|41211441+31444
4-12-1|1441|+3|1444|41211441+31444
Etapa 1.3
Avalie |1441|1441.
Toque para ver mais passagens...
Etapa 1.3.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
4-12-1(11-44)+3|1444|4121(1144)+31444
Etapa 1.3.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.2.1.1
Multiplique 11 por 11.
4-12-1(1-44)+3|1444|4121(144)+31444
Etapa 1.3.2.1.2
Multiplique -44 por 44.
4-12-1(1-16)+3|1444|4121(116)+31444
4-12-1(1-16)+3|1444|4121(116)+31444
Etapa 1.3.2.2
Subtraia 1616 de 11.
4-12-1-15+3|1444|412115+31444
4-12-1-15+3|1444|412115+31444
4-12-1-15+3|1444|412115+31444
Etapa 1.4
Avalie |1444|1444.
Toque para ver mais passagens...
Etapa 1.4.1
O determinante de uma matriz 2×22×2 pode ser encontrado ao usar a fórmula |abcd|=ad-cbabcd=adcb.
4-12-1-15+3(14-44)412115+3(1444)
Etapa 1.4.2
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.4.2.1.1
Multiplique 44 por 11.
4-12-1-15+3(4-44)412115+3(444)
Etapa 1.4.2.1.2
Multiplique -44 por 44.
4-12-1-15+3(4-16)412115+3(416)
4-12-1-15+3(4-16)412115+3(416)
Etapa 1.4.2.2
Subtraia 1616 de 44.
4-12-1-15+3-12412115+312
4-12-1-15+3-12412115+312
4-12-1-15+3-12412115+312
Etapa 1.5
Simplifique o determinante.
Toque para ver mais passagens...
Etapa 1.5.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.5.1.1
Multiplique 44 por -1212.
-48-1-15+3-1248115+312
Etapa 1.5.1.2
Multiplique -11 por -1515.
-48+15+3-1248+15+312
Etapa 1.5.1.3
Multiplique 33 por -1212.
-48+15-3648+1536
-48+15-3648+1536
Etapa 1.5.2
Some -4848 e 1515.
-33-363336
Etapa 1.5.3
Subtraia 3636 de -3333.
-6969
-6969
-6969
Etapa 2
Since the determinant is non-zero, the inverse exists.
Etapa 3
Set up a 3×63×6 matrix where the left half is the original matrix and the right half is its identity matrix.
[413100144010441001]413100144010441001
Etapa 4
Encontre a forma escalonada reduzida por linhas.
Toque para ver mais passagens...
Etapa 4.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
Toque para ver mais passagens...
Etapa 4.1.1
Multiply each element of R1R1 by 1414 to make the entry at 1,11,1 a 11.
[441434140404144010441001]⎢ ⎢441434140404144010441001⎥ ⎥
Etapa 4.1.2
Simplifique R1R1.
[114341400144010441001]⎢ ⎢114341400144010441001⎥ ⎥
[114341400144010441001]⎢ ⎢114341400144010441001⎥ ⎥
Etapa 4.2
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
Toque para ver mais passagens...
Etapa 4.2.1
Perform the row operation R2=R2-R1 to make the entry at 2,1 a 0.
[1143414001-14-144-340-141-00-0441001]
Etapa 4.2.2
Simplifique R2.
[1143414000154134-1410441001]
[1143414000154134-1410441001]
Etapa 4.3
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
Toque para ver mais passagens...
Etapa 4.3.1
Perform the row operation R3=R3-4R1 to make the entry at 3,1 a 0.
[1143414000154134-14104-414-4(14)1-4(34)0-4(14)0-401-40]
Etapa 4.3.2
Simplifique R3.
[1143414000154134-141003-2-101]
[1143414000154134-141003-2-101]
Etapa 4.4
Multiply each element of R2 by 415 to make the entry at 2,2 a 1.
Toque para ver mais passagens...
Etapa 4.4.1
Multiply each element of R2 by 415 to make the entry at 2,2 a 1.
[1143414004150415154415134415(-14)4151415003-2-101]
Etapa 4.4.2
Simplifique R2.
[114341400011315-115415003-2-101]
[114341400011315-115415003-2-101]
Etapa 4.5
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
Toque para ver mais passagens...
Etapa 4.5.1
Perform the row operation R3=R3-3R2 to make the entry at 3,2 a 0.
[114341400011315-11541500-303-31-2-3(1315)-1-3(-115)0-3(415)1-30]
Etapa 4.5.2
Simplifique R3.
[114341400011315-115415000-235-45-451]
[114341400011315-115415000-235-45-451]
Etapa 4.6
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
Toque para ver mais passagens...
Etapa 4.6.1
Multiply each element of R3 by -523 to make the entry at 3,3 a 1.
[114341400011315-1154150-5230-5230-523(-235)-523(-45)-523(-45)-5231]
Etapa 4.6.2
Simplifique R3.
[114341400011315-1154150001423423-523]
[114341400011315-1154150001423423-523]
Etapa 4.7
Perform the row operation R2=R2-1315R3 to make the entry at 2,3 a 0.
Toque para ver mais passagens...
Etapa 4.7.1
Perform the row operation R2=R2-1315R3 to make the entry at 2,3 a 0.
[1143414000-131501-131501315-13151-115-1315423415-13154230-1315(-523)001423423-523]
Etapa 4.7.2
Simplifique R2.
[114341400010-5238691369001423423-523]
[114341400010-5238691369001423423-523]
Etapa 4.8
Perform the row operation R1=R1-34R3 to make the entry at 1,3 a 0.
Toque para ver mais passagens...
Etapa 4.8.1
Perform the row operation R1=R1-34R3 to make the entry at 1,3 a 0.
[1-34014-34034-34114-344230-344230-34(-523)010-5238691369001423423-523]
Etapa 4.8.2
Simplifique R1.
[11401192-3231592010-5238691369001423423-523]
[11401192-3231592010-5238691369001423423-523]
Etapa 4.9
Perform the row operation R1=R1-14R2 to make the entry at 1,2 a 0.
Toque para ver mais passagens...
Etapa 4.9.1
Perform the row operation R1=R1-14R2 to make the entry at 1,2 a 0.
[1-14014-1410-1401192-14(-523)-323-148691592-141369010-5238691369001423423-523]
Etapa 4.9.2
Simplifique R1.
[100423-1169869010-5238691369001423423-523]
[100423-1169869010-5238691369001423423-523]
[100423-1169869010-5238691369001423423-523]
Etapa 5
The right half of the reduced row echelon form is the inverse.
[423-1169869-5238691369423423-523]
Insira SEU problema
using Amazon.Auth.AccessControlPolicy;
O Mathway requer o JavaScript e um navegador moderno.
 [x2  12  π  xdx ] 
AmazonPay