Álgebra Exemplos

Descrever a transformação
Etapa 1
A função principal é a forma mais simples do tipo de função em questão.
Etapa 2
Considere que é e é .
Etapa 3
A transformação da primeira equação para a segunda pode ser encontrada ao determinar , e para cada equação.
Etapa 4
Encontre , e para .
Etapa 5
Encontre , e para .
Etapa 6
O deslocamento horizontal depende do valor de . Ele é descrito como:
- O gráfico está deslocado unidades para a esquerda.
- O gráfico está deslocado unidades para a direita.
Deslocamento horizontal: unidades à esquerda
Etapa 7
O deslocamento vertical depende do valor de . Ele é descrito como:
- O gráfico está deslocado unidades para cima.
- The graph is shifted down units.
Deslocamento vertical: unidades para baixo
Etapa 8
O sinal de descreve a reflexão no eixo x. significa que o gráfico é refletido no eixo x.
Reflexão sobre o eixo x: nenhuma
Etapa 9
Para encontrar a transformação, compare as duas funções e veja se há um deslocamento horizontal ou vertical, um reflexo sobre o eixo x e se há um alongamento vertical.
Função principal:
Deslocamento horizontal: unidades à esquerda
Deslocamento vertical: unidades para baixo
Reflexão sobre o eixo x: nenhuma
Etapa 10
Insira SEU problema
O Mathway requer o JavaScript e um navegador moderno.