Álgebra Exemplos
x2+7x-12=0x2+7x−12=0
Etapa 1
Etapa 1.1
Aplique a propriedade distributiva.
2x2+2(7x)+2(-12)=02x2+2(7x)+2(−12)=0
Etapa 1.2
Simplifique.
Etapa 1.2.1
Multiplique 77 por 22.
2x2+14x+2(-12)=02x2+14x+2(−12)=0
Etapa 1.2.2
Cancele o fator comum de 22.
Etapa 1.2.2.1
Mova o negativo de maior ordem em -12−12 para o numerador.
2x2+14x+2(-12)=02x2+14x+2(−12)=0
Etapa 1.2.2.2
Cancele o fator comum.
2x2+14x+2(-12)=0
Etapa 1.2.2.3
Reescreva a expressão.
2x2+14x-1=0
2x2+14x-1=0
2x2+14x-1=0
2x2+14x-1=0
Etapa 2
Use a fórmula quadrática para encontrar as soluções.
-b±√b2-4(ac)2a
Etapa 3
Substitua os valores a=2, b=14 e c=-1 na fórmula quadrática e resolva x.
-14±√142-4⋅(2⋅-1)2⋅2
Etapa 4
Etapa 4.1
Simplifique o numerador.
Etapa 4.1.1
Eleve 14 à potência de 2.
x=-14±√196-4⋅2⋅-12⋅2
Etapa 4.1.2
Multiplique -4⋅2⋅-1.
Etapa 4.1.2.1
Multiplique -4 por 2.
x=-14±√196-8⋅-12⋅2
Etapa 4.1.2.2
Multiplique -8 por -1.
x=-14±√196+82⋅2
x=-14±√196+82⋅2
Etapa 4.1.3
Some 196 e 8.
x=-14±√2042⋅2
Etapa 4.1.4
Reescreva 204 como 22⋅51.
Etapa 4.1.4.1
Fatore 4 de 204.
x=-14±√4(51)2⋅2
Etapa 4.1.4.2
Reescreva 4 como 22.
x=-14±√22⋅512⋅2
x=-14±√22⋅512⋅2
Etapa 4.1.5
Elimine os termos abaixo do radical.
x=-14±2√512⋅2
x=-14±2√512⋅2
Etapa 4.2
Multiplique 2 por 2.
x=-14±2√514
Etapa 4.3
Simplifique -14±2√514.
x=-7±√512
x=-7±√512
Etapa 5
Etapa 5.1
Simplifique o numerador.
Etapa 5.1.1
Eleve 14 à potência de 2.
x=-14±√196-4⋅2⋅-12⋅2
Etapa 5.1.2
Multiplique -4⋅2⋅-1.
Etapa 5.1.2.1
Multiplique -4 por 2.
x=-14±√196-8⋅-12⋅2
Etapa 5.1.2.2
Multiplique -8 por -1.
x=-14±√196+82⋅2
x=-14±√196+82⋅2
Etapa 5.1.3
Some 196 e 8.
x=-14±√2042⋅2
Etapa 5.1.4
Reescreva 204 como 22⋅51.
Etapa 5.1.4.1
Fatore 4 de 204.
x=-14±√4(51)2⋅2
Etapa 5.1.4.2
Reescreva 4 como 22.
x=-14±√22⋅512⋅2
x=-14±√22⋅512⋅2
Etapa 5.1.5
Elimine os termos abaixo do radical.
x=-14±2√512⋅2
x=-14±2√512⋅2
Etapa 5.2
Multiplique 2 por 2.
x=-14±2√514
Etapa 5.3
Simplifique -14±2√514.
x=-7±√512
Etapa 5.4
Altere ± para +.
x=-7+√512
Etapa 5.5
Reescreva -7 como -1(7).
x=-1⋅7+√512
Etapa 5.6
Fatore -1 de √51.
x=-1⋅7-1(-√51)2
Etapa 5.7
Fatore -1 de -1(7)-1(-√51).
x=-1(7-√51)2
Etapa 5.8
Mova o número negativo para a frente da fração.
x=-7-√512
x=-7-√512
Etapa 6
Etapa 6.1
Simplifique o numerador.
Etapa 6.1.1
Eleve 14 à potência de 2.
x=-14±√196-4⋅2⋅-12⋅2
Etapa 6.1.2
Multiplique -4⋅2⋅-1.
Etapa 6.1.2.1
Multiplique -4 por 2.
x=-14±√196-8⋅-12⋅2
Etapa 6.1.2.2
Multiplique -8 por -1.
x=-14±√196+82⋅2
x=-14±√196+82⋅2
Etapa 6.1.3
Some 196 e 8.
x=-14±√2042⋅2
Etapa 6.1.4
Reescreva 204 como 22⋅51.
Etapa 6.1.4.1
Fatore 4 de 204.
x=-14±√4(51)2⋅2
Etapa 6.1.4.2
Reescreva 4 como 22.
x=-14±√22⋅512⋅2
x=-14±√22⋅512⋅2
Etapa 6.1.5
Elimine os termos abaixo do radical.
x=-14±2√512⋅2
x=-14±2√512⋅2
Etapa 6.2
Multiplique 2 por 2.
x=-14±2√514
Etapa 6.3
Simplifique -14±2√514.
x=-7±√512
Etapa 6.4
Altere ± para -.
x=-7-√512
Etapa 6.5
Reescreva -7 como -1(7).
x=-1⋅7-√512
Etapa 6.6
Fatore -1 de -√51.
x=-1⋅7-(√51)2
Etapa 6.7
Fatore -1 de -1(7)-(√51).
x=-1(7+√51)2
Etapa 6.8
Mova o número negativo para a frente da fração.
x=-7+√512
x=-7+√512
Etapa 7
A resposta final é a combinação das duas soluções.
x=-7-√512,-7+√512
Etapa 8
O resultado pode ser mostrado de várias formas.
Forma exata:
x=-7-√512,-7+√512
Forma decimal:
x=0.07071421…,-7.07071421…