Álgebra Exemplos
(a+b+c)3(a+b+c)3
Etapa 1
Use o teorema da expansão trinomial para encontrar cada termo. O teorema trinomial determina que (a+b+c)n=n∑m=0m∑k=0CmnCkman-mbm-kck(a+b+c)n=n∑m=0m∑k=0nCmmCkan−mbm−kck, em que CmnCkm=n!(n-m)!(m-k)!k!nCmmCk=n!(n−m)!(m−k)!k!.
3∑m=0m∑k=03!(3-m)!(m-k)!k!a3-mbm-kck3∑m=0m∑k=03!(3−m)!(m−k)!k!a3−mbm−kck
Etapa 2
Expanda a soma.
3!(3+0)!(0+0)!0!a3-0b0-0c0+3!(3-1)!(1+0)!0!a3-1⋅1b1-0c0+…+3!(3-3)!(3-3)!3!a3-1⋅3b3-1⋅3c33!(3+0)!(0+0)!0!a3−0b0−0c0+3!(3−1)!(1+0)!0!a3−1⋅1b1−0c0+…+3!(3−3)!(3−3)!3!a3−1⋅3b3−1⋅3c3
Etapa 3
Simplifique o resultado.
a3+3a2b+3a2c+3ab2+6abc+3ac2+b3+3b2c+3bc2+c3a3+3a2b+3a2c+3ab2+6abc+3ac2+b3+3b2c+3bc2+c3