Enter a problem...
Trigonometry Examples
(12,-√32)(12,−√32)
Step 1
To find the sec(θ)sec(θ) between the x-axis and the line between the points (0,0)(0,0) and (12,-√32)(12,−√32), draw the triangle between the three points (0,0)(0,0), (12,0)(12,0), and (12,-√32)(12,−√32).
Opposite : -√32−√32
Adjacent : 1212
Step 2
Step 2.1
Apply the product rule to 1212.
√1222+(-√32)2
⎷1222+(−√32)2
Step 2.2
One to any power is one.
√122+(-√32)2
⎷122+(−√32)2
Step 2.3
Raise 22 to the power of 22.
√14+(-√32)2
⎷14+(−√32)2
Step 2.4
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.4.1
Apply the product rule to -√32−√32.
√14+(-1)2(√32)2
⎷14+(−1)2(√32)2
Step 2.4.2
Apply the product rule to √32√32.
√14+(-1)2√3222√14+(−1)2√3222
√14+(-1)2√3222√14+(−1)2√3222
Step 2.5
Simplify the expression.
Step 2.5.1
Raise -1−1 to the power of 22.
√14+1√3222√14+1√3222
Step 2.5.2
Multiply √3222√3222 by 11.
√14+√3222√14+√3222
√14+√3222√14+√3222
Step 2.6
Rewrite √32√32 as 33.
Step 2.6.1
Use n√ax=axnn√ax=axn to rewrite √3√3 as 312312.
√14+(312)222
⎷14+(312)222
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√14+312⋅222√14+312⋅222
Step 2.6.3
Combine 1212 and 22.
√14+32222√14+32222
Step 2.6.4
Cancel the common factor of 22.
Step 2.6.4.1
Cancel the common factor.
√14+32222
Step 2.6.4.2
Rewrite the expression.
√14+3122
√14+3122
Step 2.6.5
Evaluate the exponent.
√14+322
√14+322
Step 2.7
Simplify the expression.
Step 2.7.1
Raise 2 to the power of 2.
√14+34
Step 2.7.2
Combine the numerators over the common denominator.
√1+34
Step 2.7.3
Add 1 and 3.
√44
Step 2.7.4
Divide 4 by 4.
√1
Step 2.7.5
Any root of 1 is 1.
1
1
1
Step 3
sec(θ)=HypotenuseAdjacent therefore sec(θ)=112.
112
Step 4
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
sec(θ)=1⋅2
Step 4.2
Multiply 2 by 1.
sec(θ)=2
sec(θ)=2