Trigonometry Examples

Find the Secant Given the Point (1/2,-( square root of 3)/2)
(12,-32)(12,32)
Step 1
To find the sec(θ)sec(θ) between the x-axis and the line between the points (0,0)(0,0) and (12,-32)(12,32), draw the triangle between the three points (0,0)(0,0), (12,0)(12,0), and (12,-32)(12,32).
Opposite : -3232
Adjacent : 1212
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Apply the product rule to 1212.
1222+(-32)2 1222+(32)2
Step 2.2
One to any power is one.
122+(-32)2 122+(32)2
Step 2.3
Raise 22 to the power of 22.
14+(-32)2 14+(32)2
Step 2.4
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.4.1
Apply the product rule to -3232.
14+(-1)2(32)2 14+(1)2(32)2
Step 2.4.2
Apply the product rule to 3232.
14+(-1)2322214+(1)23222
14+(-1)2322214+(1)23222
Step 2.5
Simplify the expression.
Tap for more steps...
Step 2.5.1
Raise -11 to the power of 22.
14+1322214+13222
Step 2.5.2
Multiply 32223222 by 11.
14+322214+3222
14+322214+3222
Step 2.6
Rewrite 3232 as 33.
Tap for more steps...
Step 2.6.1
Use nax=axnnax=axn to rewrite 33 as 312312.
14+(312)222  14+(312)222
Step 2.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
14+31222214+312222
Step 2.6.3
Combine 1212 and 22.
14+3222214+32222
Step 2.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.6.4.1
Cancel the common factor.
14+32222
Step 2.6.4.2
Rewrite the expression.
14+3122
14+3122
Step 2.6.5
Evaluate the exponent.
14+322
14+322
Step 2.7
Simplify the expression.
Tap for more steps...
Step 2.7.1
Raise 2 to the power of 2.
14+34
Step 2.7.2
Combine the numerators over the common denominator.
1+34
Step 2.7.3
Add 1 and 3.
44
Step 2.7.4
Divide 4 by 4.
1
Step 2.7.5
Any root of 1 is 1.
1
1
1
Step 3
sec(θ)=HypotenuseAdjacent therefore sec(θ)=112.
112
Step 4
Simplify sec(θ).
Tap for more steps...
Step 4.1
Multiply the numerator by the reciprocal of the denominator.
sec(θ)=12
Step 4.2
Multiply 2 by 1.
sec(θ)=2
sec(θ)=2
 [x2  12  π  xdx ]