Enter a problem...
Trigonometry Examples
SideAngleb=4c=a=A=75B=20C=SideAngleb=4c=a=A=75B=20C=
Step 1
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 2
Substitute the known values into the law of sines to find a.
sin(75)a=sin(20)4
Step 3
Step 3.1
Factor each term.
Step 3.1.1
The exact value of sin(75) is √2+√64.
Step 3.1.1.1
Split 75 into two angles where the values of the six trigonometric functions are known.
sin(30+45)a=sin(20)4
Step 3.1.1.2
Apply the sum of angles identity.
sin(30)cos(45)+cos(30)sin(45)a=sin(20)4
Step 3.1.1.3
The exact value of sin(30) is 12.
12cos(45)+cos(30)sin(45)a=sin(20)4
Step 3.1.1.4
The exact value of cos(45) is √22.
12⋅√22+cos(30)sin(45)a=sin(20)4
Step 3.1.1.5
The exact value of cos(30) is √32.
12⋅√22+√32sin(45)a=sin(20)4
Step 3.1.1.6
The exact value of sin(45) is √22.
12⋅√22+√32⋅√22a=sin(20)4
Step 3.1.1.7
Simplify 12⋅√22+√32⋅√22.
Step 3.1.1.7.1
Simplify each term.
Step 3.1.1.7.1.1
Multiply 12⋅√22.
Step 3.1.1.7.1.1.1
Multiply 12 by √22.
√22⋅2+√32⋅√22a=sin(20)4
Step 3.1.1.7.1.1.2
Multiply 2 by 2.
√24+√32⋅√22a=sin(20)4
√24+√32⋅√22a=sin(20)4
Step 3.1.1.7.1.2
Multiply √32⋅√22.
Step 3.1.1.7.1.2.1
Multiply √32 by √22.
√24+√3√22⋅2a=sin(20)4
Step 3.1.1.7.1.2.2
Combine using the product rule for radicals.
√24+√3⋅22⋅2a=sin(20)4
Step 3.1.1.7.1.2.3
Multiply 3 by 2.
√24+√62⋅2a=sin(20)4
Step 3.1.1.7.1.2.4
Multiply 2 by 2.
√24+√64a=sin(20)4
√24+√64a=sin(20)4
√24+√64a=sin(20)4
Step 3.1.1.7.2
Combine the numerators over the common denominator.
√2+√64a=sin(20)4
√2+√64a=sin(20)4
√2+√64a=sin(20)4
Step 3.1.2
Multiply the numerator by the reciprocal of the denominator.
√2+√64⋅1a=sin(20)4
Step 3.1.3
Multiply √2+√64 by 1a.
√2+√64a=sin(20)4
Step 3.1.4
Evaluate sin(20).
√2+√64a=0.342020144
Step 3.1.5
Divide 0.34202014 by 4.
√2+√64a=0.08550503
√2+√64a=0.08550503
Step 3.2
Find the LCD of the terms in the equation.
Step 3.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
4a,1
Step 3.2.2
The LCM of one and any expression is the expression.
4a
4a
Step 3.3
Multiply each term in √2+√64a=0.08550503 by 4a to eliminate the fractions.
Step 3.3.1
Multiply each term in √2+√64a=0.08550503 by 4a.
√2+√64a(4a)=0.08550503(4a)
Step 3.3.2
Simplify the left side.
Step 3.3.2.1
Rewrite using the commutative property of multiplication.
4√2+√64aa=0.08550503(4a)
Step 3.3.2.2
Cancel the common factor of 4.
Step 3.3.2.2.1
Factor 4 out of 4a.
4√2+√64(a)a=0.08550503(4a)
Step 3.3.2.2.2
Cancel the common factor.
4√2+√64aa=0.08550503(4a)
Step 3.3.2.2.3
Rewrite the expression.
√2+√6aa=0.08550503(4a)
√2+√6aa=0.08550503(4a)
Step 3.3.2.3
Cancel the common factor of a.
Step 3.3.2.3.1
Cancel the common factor.
√2+√6aa=0.08550503(4a)
Step 3.3.2.3.2
Rewrite the expression.
√2+√6=0.08550503(4a)
√2+√6=0.08550503(4a)
√2+√6=0.08550503(4a)
Step 3.3.3
Simplify the right side.
Step 3.3.3.1
Multiply 4 by 0.08550503.
√2+√6=0.34202014a
√2+√6=0.34202014a
√2+√6=0.34202014a
Step 3.4
Solve the equation.
Step 3.4.1
Rewrite the equation as 0.34202014a=√2+√6.
0.34202014a=√2+√6
Step 3.4.2
Divide each term in 0.34202014a=√2+√6 by 0.34202014 and simplify.
Step 3.4.2.1
Divide each term in 0.34202014a=√2+√6 by 0.34202014.
0.34202014a0.34202014=√20.34202014+√60.34202014
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Cancel the common factor of 0.34202014.
Step 3.4.2.2.1.1
Cancel the common factor.
0.34202014a0.34202014=√20.34202014+√60.34202014
Step 3.4.2.2.1.2
Divide a by 1.
a=√20.34202014+√60.34202014
a=√20.34202014+√60.34202014
a=√20.34202014+√60.34202014
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Simplify each term.
Step 3.4.2.3.1.1
Evaluate the root.
a=1.414213560.34202014+√60.34202014
Step 3.4.2.3.1.2
Divide 1.41421356 by 0.34202014.
a=4.13488383+√60.34202014
Step 3.4.2.3.1.3
Evaluate the root.
a=4.13488383+2.449489740.34202014
Step 3.4.2.3.1.4
Divide 2.44948974 by 0.34202014.
a=4.13488383+7.16182888
a=4.13488383+7.16182888
Step 3.4.2.3.2
Add 4.13488383 and 7.16182888.
a=11.29671272
a=11.29671272
a=11.29671272
a=11.29671272
a=11.29671272
Step 4
The sum of all the angles in a triangle is 180 degrees.
75+C+20=180
Step 5
Step 5.1
Add 75 and 20.
C+95=180
Step 5.2
Move all terms not containing C to the right side of the equation.
Step 5.2.1
Subtract 95 from both sides of the equation.
C=180-95
Step 5.2.2
Subtract 95 from 180.
C=85
C=85
C=85
Step 6
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 7
Substitute the known values into the law of sines to find c.
sin(85)c=sin(75)11.29671272
Step 8
Step 8.1
Factor each term.
Step 8.1.1
Evaluate sin(85).
0.99619469c=sin(75)11.29671272
Step 8.1.2
The exact value of sin(75) is √2+√64.
Step 8.1.2.1
Split 75 into two angles where the values of the six trigonometric functions are known.
0.99619469c=sin(30+45)11.29671272
Step 8.1.2.2
Apply the sum of angles identity.
0.99619469c=sin(30)cos(45)+cos(30)sin(45)11.29671272
Step 8.1.2.3
The exact value of sin(30) is 12.
0.99619469c=12cos(45)+cos(30)sin(45)11.29671272
Step 8.1.2.4
The exact value of cos(45) is √22.
0.99619469c=12⋅√22+cos(30)sin(45)11.29671272
Step 8.1.2.5
The exact value of cos(30) is √32.
0.99619469c=12⋅√22+√32sin(45)11.29671272
Step 8.1.2.6
The exact value of sin(45) is √22.
0.99619469c=12⋅√22+√32⋅√2211.29671272
Step 8.1.2.7
Simplify 12⋅√22+√32⋅√22.
Step 8.1.2.7.1
Simplify each term.
Step 8.1.2.7.1.1
Multiply 12⋅√22.
Step 8.1.2.7.1.1.1
Multiply 12 by √22.
0.99619469c=√22⋅2+√32⋅√2211.29671272
Step 8.1.2.7.1.1.2
Multiply 2 by 2.
0.99619469c=√24+√32⋅√2211.29671272
0.99619469c=√24+√32⋅√2211.29671272
Step 8.1.2.7.1.2
Multiply √32⋅√22.
Step 8.1.2.7.1.2.1
Multiply √32 by √22.
0.99619469c=√24+√3√22⋅211.29671272
Step 8.1.2.7.1.2.2
Combine using the product rule for radicals.
0.99619469c=√24+√3⋅22⋅211.29671272
Step 8.1.2.7.1.2.3
Multiply 3 by 2.
0.99619469c=√24+√62⋅211.29671272
Step 8.1.2.7.1.2.4
Multiply 2 by 2.
0.99619469c=√24+√6411.29671272
0.99619469c=√24+√6411.29671272
0.99619469c=√24+√6411.29671272
Step 8.1.2.7.2
Combine the numerators over the common denominator.
0.99619469c=√2+√6411.29671272
0.99619469c=√2+√6411.29671272
0.99619469c=√2+√6411.29671272
Step 8.1.3
Multiply the numerator by the reciprocal of the denominator.
0.99619469c=√2+√64⋅111.29671272
Step 8.1.4
Divide 1 by 11.29671272.
0.99619469c=√2+√64⋅0.08852132
Step 8.1.5
Multiply √2+√64⋅0.08852132.
Step 8.1.5.1
Combine √2+√64 and 0.08852132.
0.99619469c=(√2+√6)⋅0.088521324
Step 8.1.5.2
Multiply √2+√6 by 0.08852132.
0.99619469c=0.342020144
0.99619469c=0.342020144
Step 8.1.6
Divide 0.34202014 by 4.
0.99619469c=0.08550503
0.99619469c=0.08550503
Step 8.2
Find the LCD of the terms in the equation.
Step 8.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
c,1
Step 8.2.2
The LCM of one and any expression is the expression.
c
c
Step 8.3
Multiply each term in 0.99619469c=0.08550503 by c to eliminate the fractions.
Step 8.3.1
Multiply each term in 0.99619469c=0.08550503 by c.
0.99619469cc=0.08550503c
Step 8.3.2
Simplify the left side.
Step 8.3.2.1
Cancel the common factor of c.
Step 8.3.2.1.1
Cancel the common factor.
0.99619469cc=0.08550503c
Step 8.3.2.1.2
Rewrite the expression.
0.99619469=0.08550503c
0.99619469=0.08550503c
0.99619469=0.08550503c
0.99619469=0.08550503c
Step 8.4
Solve the equation.
Step 8.4.1
Rewrite the equation as 0.08550503c=0.99619469.
0.08550503c=0.99619469
Step 8.4.2
Divide each term in 0.08550503c=0.99619469 by 0.08550503 and simplify.
Step 8.4.2.1
Divide each term in 0.08550503c=0.99619469 by 0.08550503.
0.08550503c0.08550503=0.996194690.08550503
Step 8.4.2.2
Simplify the left side.
Step 8.4.2.2.1
Cancel the common factor of 0.08550503.
Step 8.4.2.2.1.1
Cancel the common factor.
0.08550503c0.08550503=0.996194690.08550503
Step 8.4.2.2.1.2
Divide c by 1.
c=0.996194690.08550503
c=0.996194690.08550503
c=0.996194690.08550503
Step 8.4.2.3
Simplify the right side.
Step 8.4.2.3.1
Divide 0.99619469 by 0.08550503.
c=11.65071376
c=11.65071376
c=11.65071376
c=11.65071376
c=11.65071376