Enter a problem...
Trigonometry Examples
y=-3x2+6x+5
Step 1
Step 1.1
Complete the square for -3x2+6x+5.
Step 1.1.1
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-3
b=6
c=5
Step 1.1.2
Consider the vertex form of a parabola.
a(x+d)2+e
Step 1.1.3
Find the value of d using the formula d=b2a.
Step 1.1.3.1
Substitute the values of a and b into the formula d=b2a.
d=62⋅-3
Step 1.1.3.2
Simplify the right side.
Step 1.1.3.2.1
Cancel the common factor of 6 and 2.
Step 1.1.3.2.1.1
Factor 2 out of 6.
d=2⋅32⋅-3
Step 1.1.3.2.1.2
Cancel the common factors.
Step 1.1.3.2.1.2.1
Factor 2 out of 2⋅-3.
d=2⋅32(-3)
Step 1.1.3.2.1.2.2
Cancel the common factor.
d=2⋅32⋅-3
Step 1.1.3.2.1.2.3
Rewrite the expression.
d=3-3
d=3-3
d=3-3
Step 1.1.3.2.2
Cancel the common factor of 3 and -3.
Step 1.1.3.2.2.1
Factor 3 out of 3.
d=3(1)-3
Step 1.1.3.2.2.2
Move the negative one from the denominator of 1-1.
d=-1⋅1
d=-1⋅1
Step 1.1.3.2.3
Multiply -1 by 1.
d=-1
d=-1
d=-1
Step 1.1.4
Find the value of e using the formula e=c-b24a.
Step 1.1.4.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=5-624⋅-3
Step 1.1.4.2
Simplify the right side.
Step 1.1.4.2.1
Simplify each term.
Step 1.1.4.2.1.1
Raise 6 to the power of 2.
e=5-364⋅-3
Step 1.1.4.2.1.2
Multiply 4 by -3.
e=5-36-12
Step 1.1.4.2.1.3
Divide 36 by -12.
e=5--3
Step 1.1.4.2.1.4
Multiply -1 by -3.
e=5+3
e=5+3
Step 1.1.4.2.2
Add 5 and 3.
e=8
e=8
e=8
Step 1.1.5
Substitute the values of a, d, and e into the vertex form -3(x-1)2+8.
-3(x-1)2+8
-3(x-1)2+8
Step 1.2
Set y equal to the new right side.
y=-3(x-1)2+8
y=-3(x-1)2+8
Step 2
Use the vertex form, y=a(x-h)2+k, to determine the values of a, h, and k.
a=-3
h=1
k=8
Step 3
Since the value of a is negative, the parabola opens down.
Opens Down
Step 4
Find the vertex (h,k).
(1,8)
Step 5
Step 5.1
Find the distance from the vertex to a focus of the parabola by using the following formula.
14a
Step 5.2
Substitute the value of a into the formula.
14⋅-3
Step 5.3
Simplify.
Step 5.3.1
Multiply 4 by -3.
1-12
Step 5.3.2
Move the negative in front of the fraction.
-112
-112
-112
Step 6
Step 6.1
The focus of a parabola can be found by adding p to the y-coordinate k if the parabola opens up or down.
(h,k+p)
Step 6.2
Substitute the known values of h, p, and k into the formula and simplify.
(1,9512)
(1,9512)
Step 7
Find the axis of symmetry by finding the line that passes through the vertex and the focus.
x=1
Step 8