Trigonometry Examples

Find the x and y Intercepts f(x)=4sin(2x-pi)-1
Step 1
Find the x-intercepts.
Tap for more steps...
Step 1.1
To find the x-intercept(s), substitute in for and solve for .
Step 1.2
Solve the equation.
Tap for more steps...
Step 1.2.1
Rewrite the equation as .
Step 1.2.2
Add to both sides of the equation.
Step 1.2.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.3.1
Divide each term in by .
Step 1.2.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.2.1.1
Cancel the common factor.
Step 1.2.3.2.1.2
Divide by .
Step 1.2.4
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 1.2.5
Simplify the right side.
Tap for more steps...
Step 1.2.5.1
Evaluate .
Step 1.2.6
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.2.6.1
Add to both sides of the equation.
Step 1.2.6.2
Replace with decimal approximation.
Step 1.2.6.3
Add and .
Step 1.2.7
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.7.1
Divide each term in by .
Step 1.2.7.2
Simplify the left side.
Tap for more steps...
Step 1.2.7.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.7.2.1.1
Cancel the common factor.
Step 1.2.7.2.1.2
Divide by .
Step 1.2.7.3
Simplify the right side.
Tap for more steps...
Step 1.2.7.3.1
Divide by .
Step 1.2.8
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from to find the solution in the second quadrant.
Step 1.2.9
Solve for .
Tap for more steps...
Step 1.2.9.1
Subtract from .
Step 1.2.9.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 1.2.9.2.1
Add to both sides of the equation.
Step 1.2.9.2.2
Replace with decimal approximation.
Step 1.2.9.2.3
Add and .
Step 1.2.9.3
Divide each term in by and simplify.
Tap for more steps...
Step 1.2.9.3.1
Divide each term in by .
Step 1.2.9.3.2
Simplify the left side.
Tap for more steps...
Step 1.2.9.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.9.3.2.1.1
Cancel the common factor.
Step 1.2.9.3.2.1.2
Divide by .
Step 1.2.9.3.3
Simplify the right side.
Tap for more steps...
Step 1.2.9.3.3.1
Divide by .
Step 1.2.10
Find the period of .
Tap for more steps...
Step 1.2.10.1
The period of the function can be calculated using .
Step 1.2.10.2
Replace with in the formula for period.
Step 1.2.10.3
The absolute value is the distance between a number and zero. The distance between and is .
Step 1.2.10.4
Cancel the common factor of .
Tap for more steps...
Step 1.2.10.4.1
Cancel the common factor.
Step 1.2.10.4.2
Divide by .
Step 1.2.11
The period of the function is so values will repeat every radians in both directions.
, for any integer
, for any integer
Step 1.3
x-intercept(s) in point form.
x-intercept(s): , for any integer
x-intercept(s): , for any integer
Step 2
Find the y-intercepts.
Tap for more steps...
Step 2.1
To find the y-intercept(s), substitute in for and solve for .
Step 2.2
Solve the equation.
Tap for more steps...
Step 2.2.1
Remove parentheses.
Step 2.2.2
Simplify .
Tap for more steps...
Step 2.2.2.1
Simplify each term.
Tap for more steps...
Step 2.2.2.1.1
Multiply by .
Step 2.2.2.1.2
Subtract from .
Step 2.2.2.1.3
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
Step 2.2.2.1.4
The exact value of is .
Step 2.2.2.1.5
Multiply by .
Step 2.2.2.2
Subtract from .
Step 2.3
y-intercept(s) in point form.
y-intercept(s):
y-intercept(s):
Step 3
List the intersections.
x-intercept(s): , for any integer
y-intercept(s):
Step 4