Enter a problem...
Trigonometry Examples
1-13+19-127+1811−13+19−127+181
Step 1
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by -13−13 gives the next term. In other words, an=a1rn-1an=a1rn−1.
Geometric Sequence: r=-13r=−13
Step 2
This is the form of a geometric sequence.
an=a1rn-1an=a1rn−1
Step 3
Substitute in the values of a1=1a1=1 and r=-13r=−13.
an=1(-13)n-1an=1(−13)n−1
Step 4
Multiply (-13)n-1(−13)n−1 by 11.
an=(-13)n-1an=(−13)n−1
Step 5
Step 5.1
Apply the product rule to -13−13.
an=(-1)n-1(13)n-1an=(−1)n−1(13)n−1
Step 5.2
Apply the product rule to 1313.
an=(-1)n-11n-13n-1an=(−1)n−11n−13n−1
an=(-1)n-11n-13n-1an=(−1)n−11n−13n−1
Step 6
One to any power is one.
an=(-1)n-113n-1an=(−1)n−113n−1
Step 7
Combine (-1)n-1(−1)n−1 and 13n-113n−1.
an=(-1)n-13n-1an=(−1)n−13n−1
Step 8
This is the formula to find the sum of the first nn terms of the geometric sequence. To evaluate it, find the values of rr and a1a1.
Sn=a1(rn-1)r-1Sn=a1(rn−1)r−1
Step 9
Replace the variables with the known values to find S5S5.
S5=1⋅(-13)5-1-13-1S5=1⋅(−13)5−1−13−1
Step 10
Multiply (-13)5-1-13-1(−13)5−1−13−1 by 11.
S5=(-13)5-1-13-1S5=(−13)5−1−13−1
Step 11
Step 11.1
Multiply (-13)5-1-13-1(−13)5−1−13−1 by 3333.
S5=33⋅(-13)5-1-13-1S5=33⋅(−13)5−1−13−1
Step 11.2
Combine.
S5=3((-13)5-1)3(-13-1)S5=3((−13)5−1)3(−13−1)
S5=3((-13)5-1)3(-13-1)S5=3((−13)5−1)3(−13−1)
Step 12
Apply the distributive property.
S5=3(-13)5+3⋅-13(-13)+3⋅-1S5=3(−13)5+3⋅−13(−13)+3⋅−1
Step 13
Step 13.1
Move the leading negative in -13−13 into the numerator.
S5=3(-13)5+3⋅-13(-13)+3⋅-1S5=3(−13)5+3⋅−13(−13)+3⋅−1
Step 13.2
Cancel the common factor.
S5=3(-13)5+3⋅-13(-13)+3⋅-1
Step 13.3
Rewrite the expression.
S5=3(-13)5+3⋅-1-1+3⋅-1
S5=3(-13)5+3⋅-1-1+3⋅-1
Step 14
Step 14.1
Use the power rule (ab)n=anbn to distribute the exponent.
Step 14.1.1
Apply the product rule to -13.
S5=3((-1)5(13)5)+3⋅-1-1+3⋅-1
Step 14.1.2
Apply the product rule to 13.
S5=3((-1)5(1535))+3⋅-1-1+3⋅-1
S5=3((-1)5(1535))+3⋅-1-1+3⋅-1
Step 14.2
Raise -1 to the power of 5.
S5=3(-1535)+3⋅-1-1+3⋅-1
Step 14.3
Cancel the common factor of 3.
Step 14.3.1
Move the leading negative in -1535 into the numerator.
S5=3(-1535)+3⋅-1-1+3⋅-1
Step 14.3.2
Factor 3 out of 35.
S5=3(-153⋅34)+3⋅-1-1+3⋅-1
Step 14.3.3
Cancel the common factor.
S5=3(-153⋅34)+3⋅-1-1+3⋅-1
Step 14.3.4
Rewrite the expression.
S5=-1534+3⋅-1-1+3⋅-1
S5=-1534+3⋅-1-1+3⋅-1
Step 14.4
One to any power is one.
S5=-1⋅134+3⋅-1-1+3⋅-1
Step 14.5
Raise 3 to the power of 4.
S5=-1⋅181+3⋅-1-1+3⋅-1
Step 14.6
Multiply -1 by 1.
S5=-181+3⋅-1-1+3⋅-1
Step 14.7
Move the negative in front of the fraction.
S5=-181+3⋅-1-1+3⋅-1
Step 14.8
Multiply 3 by -1.
S5=-181-3-1+3⋅-1
Step 14.9
To write -3 as a fraction with a common denominator, multiply by 8181.
S5=-181-3⋅8181-1+3⋅-1
Step 14.10
Combine -3 and 8181.
S5=-181+-3⋅8181-1+3⋅-1
Step 14.11
Combine the numerators over the common denominator.
S5=-1-3⋅8181-1+3⋅-1
Step 14.12
Simplify the numerator.
Step 14.12.1
Multiply -3 by 81.
S5=-1-24381-1+3⋅-1
Step 14.12.2
Subtract 243 from -1.
S5=-24481-1+3⋅-1
S5=-24481-1+3⋅-1
Step 14.13
Move the negative in front of the fraction.
S5=-24481-1+3⋅-1
S5=-24481-1+3⋅-1
Step 15
Step 15.1
Multiply 3 by -1.
S5=-24481-1-3
Step 15.2
Subtract 3 from -1.
S5=-24481-4
S5=-24481-4
Step 16
Multiply the numerator by the reciprocal of the denominator.
S5=-24481⋅1-4
Step 17
Step 17.1
Move the leading negative in -24481 into the numerator.
S5=-24481⋅1-4
Step 17.2
Factor 4 out of -244.
S5=4(-61)81⋅1-4
Step 17.3
Factor 4 out of -4.
S5=4⋅-6181⋅14⋅-1
Step 17.4
Cancel the common factor.
S5=4⋅-6181⋅14⋅-1
Step 17.5
Rewrite the expression.
S5=-6181⋅1-1
S5=-6181⋅1-1
Step 18
Multiply -6181 by 1-1.
S5=-6181⋅-1
Step 19
Multiply 81 by -1.
S5=-61-81
Step 20
Dividing two negative values results in a positive value.
S5=6181