Trigonometry Examples

Find the Sum of the Series 1-1/3+1/9-1/27+1/81
1-13+19-127+181113+19127+181
Step 1
This is a geometric sequence since there is a common ratio between each term. In this case, multiplying the previous term in the sequence by -1313 gives the next term. In other words, an=a1rn-1an=a1rn1.
Geometric Sequence: r=-13r=13
Step 2
This is the form of a geometric sequence.
an=a1rn-1an=a1rn1
Step 3
Substitute in the values of a1=1a1=1 and r=-13r=13.
an=1(-13)n-1an=1(13)n1
Step 4
Multiply (-13)n-1(13)n1 by 11.
an=(-13)n-1an=(13)n1
Step 5
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 5.1
Apply the product rule to -1313.
an=(-1)n-1(13)n-1an=(1)n1(13)n1
Step 5.2
Apply the product rule to 1313.
an=(-1)n-11n-13n-1an=(1)n11n13n1
an=(-1)n-11n-13n-1an=(1)n11n13n1
Step 6
One to any power is one.
an=(-1)n-113n-1an=(1)n113n1
Step 7
Combine (-1)n-1(1)n1 and 13n-113n1.
an=(-1)n-13n-1an=(1)n13n1
Step 8
This is the formula to find the sum of the first nn terms of the geometric sequence. To evaluate it, find the values of rr and a1a1.
Sn=a1(rn-1)r-1Sn=a1(rn1)r1
Step 9
Replace the variables with the known values to find S5S5.
S5=1(-13)5-1-13-1S5=1(13)51131
Step 10
Multiply (-13)5-1-13-1(13)51131 by 11.
S5=(-13)5-1-13-1S5=(13)51131
Step 11
Multiply the numerator and denominator of the fraction by 33.
Tap for more steps...
Step 11.1
Multiply (-13)5-1-13-1(13)51131 by 3333.
S5=33(-13)5-1-13-1S5=33(13)51131
Step 11.2
Combine.
S5=3((-13)5-1)3(-13-1)S5=3((13)51)3(131)
S5=3((-13)5-1)3(-13-1)S5=3((13)51)3(131)
Step 12
Apply the distributive property.
S5=3(-13)5+3-13(-13)+3-1S5=3(13)5+313(13)+31
Step 13
Cancel the common factor of 33.
Tap for more steps...
Step 13.1
Move the leading negative in -1313 into the numerator.
S5=3(-13)5+3-13(-13)+3-1S5=3(13)5+313(13)+31
Step 13.2
Cancel the common factor.
S5=3(-13)5+3-13(-13)+3-1
Step 13.3
Rewrite the expression.
S5=3(-13)5+3-1-1+3-1
S5=3(-13)5+3-1-1+3-1
Step 14
Simplify the numerator.
Tap for more steps...
Step 14.1
Use the power rule (ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 14.1.1
Apply the product rule to -13.
S5=3((-1)5(13)5)+3-1-1+3-1
Step 14.1.2
Apply the product rule to 13.
S5=3((-1)5(1535))+3-1-1+3-1
S5=3((-1)5(1535))+3-1-1+3-1
Step 14.2
Raise -1 to the power of 5.
S5=3(-1535)+3-1-1+3-1
Step 14.3
Cancel the common factor of 3.
Tap for more steps...
Step 14.3.1
Move the leading negative in -1535 into the numerator.
S5=3(-1535)+3-1-1+3-1
Step 14.3.2
Factor 3 out of 35.
S5=3(-15334)+3-1-1+3-1
Step 14.3.3
Cancel the common factor.
S5=3(-15334)+3-1-1+3-1
Step 14.3.4
Rewrite the expression.
S5=-1534+3-1-1+3-1
S5=-1534+3-1-1+3-1
Step 14.4
One to any power is one.
S5=-1134+3-1-1+3-1
Step 14.5
Raise 3 to the power of 4.
S5=-1181+3-1-1+3-1
Step 14.6
Multiply -1 by 1.
S5=-181+3-1-1+3-1
Step 14.7
Move the negative in front of the fraction.
S5=-181+3-1-1+3-1
Step 14.8
Multiply 3 by -1.
S5=-181-3-1+3-1
Step 14.9
To write -3 as a fraction with a common denominator, multiply by 8181.
S5=-181-38181-1+3-1
Step 14.10
Combine -3 and 8181.
S5=-181+-38181-1+3-1
Step 14.11
Combine the numerators over the common denominator.
S5=-1-38181-1+3-1
Step 14.12
Simplify the numerator.
Tap for more steps...
Step 14.12.1
Multiply -3 by 81.
S5=-1-24381-1+3-1
Step 14.12.2
Subtract 243 from -1.
S5=-24481-1+3-1
S5=-24481-1+3-1
Step 14.13
Move the negative in front of the fraction.
S5=-24481-1+3-1
S5=-24481-1+3-1
Step 15
Simplify the denominator.
Tap for more steps...
Step 15.1
Multiply 3 by -1.
S5=-24481-1-3
Step 15.2
Subtract 3 from -1.
S5=-24481-4
S5=-24481-4
Step 16
Multiply the numerator by the reciprocal of the denominator.
S5=-244811-4
Step 17
Cancel the common factor of 4.
Tap for more steps...
Step 17.1
Move the leading negative in -24481 into the numerator.
S5=-244811-4
Step 17.2
Factor 4 out of -244.
S5=4(-61)811-4
Step 17.3
Factor 4 out of -4.
S5=4-618114-1
Step 17.4
Cancel the common factor.
S5=4-618114-1
Step 17.5
Rewrite the expression.
S5=-61811-1
S5=-61811-1
Step 18
Multiply -6181 by 1-1.
S5=-6181-1
Step 19
Multiply 81 by -1.
S5=-61-81
Step 20
Dividing two negative values results in a positive value.
S5=6181
 [x2  12  π  xdx ]