Enter a problem...
Trigonometry Examples
(2√3011,111)(2√3011,111)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (2√3011,111)(2√3011,111), draw the triangle between the three points (0,0)(0,0), (2√3011,0)(2√3011,0), and (2√3011,111)(2√3011,111).
Opposite : 111111
Adjacent : 2√30112√3011
Step 2
Step 2.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Step 2.1.1
Apply the product rule to 2√30112√3011.
√(2√30)2112+(111)2
⎷(2√30)2112+(111)2
Step 2.1.2
Apply the product rule to 2√302√30.
√22√302112+(111)2√22√302112+(111)2
√22√302112+(111)2√22√302112+(111)2
Step 2.2
Simplify the numerator.
Step 2.2.1
Raise 22 to the power of 22.
√4√302112+(111)2√4√302112+(111)2
Step 2.2.2
Rewrite √302√302 as 3030.
Step 2.2.2.1
Use n√ax=axnn√ax=axn to rewrite √30√30 as 30123012.
√4(3012)2112+(111)2
⎷4(3012)2112+(111)2
Step 2.2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
√4⋅3012⋅2112+(111)2√4⋅3012⋅2112+(111)2
Step 2.2.2.3
Combine 1212 and 22.
√4⋅3022112+(111)2√4⋅3022112+(111)2
Step 2.2.2.4
Cancel the common factor of 22.
Step 2.2.2.4.1
Cancel the common factor.
√4⋅3022112+(111)2
Step 2.2.2.4.2
Rewrite the expression.
√4⋅301112+(111)2
√4⋅301112+(111)2
Step 2.2.2.5
Evaluate the exponent.
√4⋅30112+(111)2
√4⋅30112+(111)2
√4⋅30112+(111)2
Step 2.3
Simplify the expression.
Step 2.3.1
Raise 11 to the power of 2.
√4⋅30121+(111)2
Step 2.3.2
Multiply 4 by 30.
√120121+(111)2
Step 2.3.3
Apply the product rule to 111.
√120121+12112
Step 2.3.4
One to any power is one.
√120121+1112
Step 2.3.5
Raise 11 to the power of 2.
√120121+1121
Step 2.3.6
Combine the numerators over the common denominator.
√120+1121
Step 2.3.7
Add 120 and 1.
√121121
Step 2.3.8
Divide 121 by 121.
√1
Step 2.3.9
Any root of 1 is 1.
1
1
1
Step 3
cos(θ)=AdjacentHypotenuse therefore cos(θ)=2√30111.
2√30111
Step 4
Divide 2√3011 by 1.
cos(θ)=2√3011
Step 5
Approximate the result.
cos(θ)=2√3011≈0.99585919