Trigonometry Examples

Find the Cosine Given the Point ((2 square root of 30)/11,1/11)
(23011,111)(23011,111)
Step 1
To find the cos(θ)cos(θ) between the x-axis and the line between the points (0,0)(0,0) and (23011,111)(23011,111), draw the triangle between the three points (0,0)(0,0), (23011,0)(23011,0), and (23011,111)(23011,111).
Opposite : 111111
Adjacent : 2301123011
Step 2
Find the hypotenuse using Pythagorean theorem c=a2+b2c=a2+b2.
Tap for more steps...
Step 2.1
Use the power rule (ab)n=anbn(ab)n=anbn to distribute the exponent.
Tap for more steps...
Step 2.1.1
Apply the product rule to 2301123011.
(230)2112+(111)2  (230)2112+(111)2
Step 2.1.2
Apply the product rule to 230230.
22302112+(111)222302112+(111)2
22302112+(111)222302112+(111)2
Step 2.2
Simplify the numerator.
Tap for more steps...
Step 2.2.1
Raise 22 to the power of 22.
4302112+(111)24302112+(111)2
Step 2.2.2
Rewrite 302302 as 3030.
Tap for more steps...
Step 2.2.2.1
Use nax=axnnax=axn to rewrite 3030 as 30123012.
4(3012)2112+(111)2  4(3012)2112+(111)2
Step 2.2.2.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
430122112+(111)2430122112+(111)2
Step 2.2.2.3
Combine 1212 and 22.
43022112+(111)243022112+(111)2
Step 2.2.2.4
Cancel the common factor of 22.
Tap for more steps...
Step 2.2.2.4.1
Cancel the common factor.
43022112+(111)2
Step 2.2.2.4.2
Rewrite the expression.
4301112+(111)2
4301112+(111)2
Step 2.2.2.5
Evaluate the exponent.
430112+(111)2
430112+(111)2
430112+(111)2
Step 2.3
Simplify the expression.
Tap for more steps...
Step 2.3.1
Raise 11 to the power of 2.
430121+(111)2
Step 2.3.2
Multiply 4 by 30.
120121+(111)2
Step 2.3.3
Apply the product rule to 111.
120121+12112
Step 2.3.4
One to any power is one.
120121+1112
Step 2.3.5
Raise 11 to the power of 2.
120121+1121
Step 2.3.6
Combine the numerators over the common denominator.
120+1121
Step 2.3.7
Add 120 and 1.
121121
Step 2.3.8
Divide 121 by 121.
1
Step 2.3.9
Any root of 1 is 1.
1
1
1
Step 3
cos(θ)=AdjacentHypotenuse therefore cos(θ)=230111.
230111
Step 4
Divide 23011 by 1.
cos(θ)=23011
Step 5
Approximate the result.
cos(θ)=230110.99585919
 [x2  12  π  xdx ]