Trigonometry Examples

Find the Slope of a Perpendicular Line 3x+5y=15
3x+5y=153x+5y=15
Step 1
Rewrite in slope-intercept form.
Tap for more steps...
Step 1.1
The slope-intercept form is y=mx+by=mx+b, where mm is the slope and bb is the y-intercept.
y=mx+by=mx+b
Step 1.2
Subtract 3x3x from both sides of the equation.
5y=15-3x5y=153x
Step 1.3
Divide each term in 5y=15-3x5y=153x by 55 and simplify.
Tap for more steps...
Step 1.3.1
Divide each term in 5y=15-3x5y=153x by 55.
5y5=155+-3x55y5=155+3x5
Step 1.3.2
Simplify the left side.
Tap for more steps...
Step 1.3.2.1
Cancel the common factor of 55.
Tap for more steps...
Step 1.3.2.1.1
Cancel the common factor.
5y5=155+-3x5
Step 1.3.2.1.2
Divide y by 1.
y=155+-3x5
y=155+-3x5
y=155+-3x5
Step 1.3.3
Simplify the right side.
Tap for more steps...
Step 1.3.3.1
Simplify each term.
Tap for more steps...
Step 1.3.3.1.1
Divide 15 by 5.
y=3+-3x5
Step 1.3.3.1.2
Move the negative in front of the fraction.
y=3-3x5
y=3-3x5
y=3-3x5
y=3-3x5
Step 1.4
Write in y=mx+b form.
Tap for more steps...
Step 1.4.1
Reorder 3 and -3x5.
y=-3x5+3
Step 1.4.2
Reorder terms.
y=-(35x)+3
Step 1.4.3
Remove parentheses.
y=-35x+3
y=-35x+3
y=-35x+3
Step 2
Using the slope-intercept form, the slope is -35.
m=-35
Step 3
The equation of a perpendicular line to y=-35x+3 must have a slope that is the negative reciprocal of the original slope.
mperpendicular=-1-35
Step 4
Simplify the result.
Tap for more steps...
Step 4.1
Cancel the common factor of 1 and -1.
Tap for more steps...
Step 4.1.1
Rewrite 1 as -1(-1).
mperpendicular=--1-1-35
Step 4.1.2
Move the negative in front of the fraction.
mperpendicular=135
mperpendicular=135
Step 4.2
Multiply the numerator by the reciprocal of the denominator.
mperpendicular=1(53)
Step 4.3
Multiply 53 by 1.
mperpendicular=53
Step 4.4
Multiply --53.
Tap for more steps...
Step 4.4.1
Multiply -1 by -1.
mperpendicular=1(53)
Step 4.4.2
Multiply 53 by 1.
mperpendicular=53
mperpendicular=53
mperpendicular=53
Step 5
 [x2  12  π  xdx ]