Trigonometry Examples

Find the Maximum/Minimum Value f(x)=-4sin(x-0.5)+11
Step 1
Find the first derivative of the function.
Tap for more steps...
Step 1.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2
Evaluate .
Tap for more steps...
Step 1.2.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.2.2.1
To apply the Chain Rule, set as .
Step 1.2.2.2
The derivative of with respect to is .
Step 1.2.2.3
Replace all occurrences of with .
Step 1.2.3
By the Sum Rule, the derivative of with respect to is .
Step 1.2.4
Differentiate using the Power Rule which states that is where .
Step 1.2.5
Since is constant with respect to , the derivative of with respect to is .
Step 1.2.6
Add and .
Step 1.2.7
Multiply by .
Step 1.3
Differentiate using the Constant Rule.
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Add and .
Step 2
Find the second derivative of the function.
Tap for more steps...
Step 2.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.2.1
To apply the Chain Rule, set as .
Step 2.2.2
The derivative of with respect to is .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Differentiate.
Tap for more steps...
Step 2.3.1
Multiply by .
Step 2.3.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.3
Differentiate using the Power Rule which states that is where .
Step 2.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.5
Simplify the expression.
Tap for more steps...
Step 2.3.5.1
Add and .
Step 2.3.5.2
Multiply by .
Step 3
To find the local maximum and minimum values of the function, set the derivative equal to and solve.
Step 4
Divide each term in by and simplify.
Tap for more steps...
Step 4.1
Divide each term in by .
Step 4.2
Simplify the left side.
Tap for more steps...
Step 4.2.1
Cancel the common factor of .
Tap for more steps...
Step 4.2.1.1
Cancel the common factor.
Step 4.2.1.2
Divide by .
Step 4.3
Simplify the right side.
Tap for more steps...
Step 4.3.1
Divide by .
Step 5
Take the inverse cosine of both sides of the equation to extract from inside the cosine.
Step 6
Simplify the right side.
Tap for more steps...
Step 6.1
The exact value of is .
Step 7
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 7.1
Add to both sides of the equation.
Step 7.2
Add and .
Step 8
The cosine function is positive in the first and fourth quadrants. To find the second solution, subtract the reference angle from to find the solution in the fourth quadrant.
Step 9
Solve for .
Tap for more steps...
Step 9.1
Simplify .
Tap for more steps...
Step 9.1.1
To write as a fraction with a common denominator, multiply by .
Step 9.1.2
Combine fractions.
Tap for more steps...
Step 9.1.2.1
Combine and .
Step 9.1.2.2
Combine the numerators over the common denominator.
Step 9.1.3
Simplify the numerator.
Tap for more steps...
Step 9.1.3.1
Multiply by .
Step 9.1.3.2
Subtract from .
Step 9.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 9.2.1
Add to both sides of the equation.
Step 9.2.2
Add and .
Step 10
The solution to the equation .
Step 11
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 12
Subtract from .
Step 13
is a local minimum because the value of the second derivative is positive. This is referred to as the second derivative test.
is a local minimum
Step 14
Find the y-value when .
Tap for more steps...
Step 14.1
Replace the variable with in the expression.
Step 14.2
Simplify the result.
Tap for more steps...
Step 14.2.1
Subtract from .
Step 14.2.2
The final answer is .
Step 15
Evaluate the second derivative at . If the second derivative is positive, then this is a local minimum. If it is negative, then this is a local maximum.
Step 16
Subtract from .
Step 17
is a local maximum because the value of the second derivative is negative. This is referred to as the second derivative test.
is a local maximum
Step 18
Find the y-value when .
Tap for more steps...
Step 18.1
Replace the variable with in the expression.
Step 18.2
Simplify the result.
Tap for more steps...
Step 18.2.1
Subtract from .
Step 18.2.2
The final answer is .
Step 19
These are the local extrema for .
is a local minima
is a local maxima
Step 20