Enter a problem...
Trigonometry Examples
SideAngleb=23c=a=14A=B=105C=SideAngleb=23c=a=14A=B=105C=
Step 1
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)csin(A)a=sin(B)b=sin(C)c
Step 2
Substitute the known values into the law of sines to find AA.
sin(A)14=sin(105)23sin(A)14=sin(105)23
Step 3
Step 3.1
Multiply both sides of the equation by 1414.
14sin(A)14=14sin(105)2314sin(A)14=14sin(105)23
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Cancel the common factor of 1414.
Step 3.2.1.1.1
Cancel the common factor.
14sin(A)14=14sin(105)23
Step 3.2.1.1.2
Rewrite the expression.
sin(A)=14sin(105)23
sin(A)=14sin(105)23
sin(A)=14sin(105)23
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify 14sin(105)23.
Step 3.2.2.1.1
The exact value of sin(105) is √2+√64.
Step 3.2.2.1.1.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant.
sin(A)=14sin(75)23
Step 3.2.2.1.1.2
Split 75 into two angles where the values of the six trigonometric functions are known.
sin(A)=14sin(30+45)23
Step 3.2.2.1.1.3
Apply the sum of angles identity.
sin(A)=14sin(30)cos(45)+cos(30)sin(45)23
Step 3.2.2.1.1.4
The exact value of sin(30) is 12.
sin(A)=1412cos(45)+cos(30)sin(45)23
Step 3.2.2.1.1.5
The exact value of cos(45) is √22.
sin(A)=1412⋅√22+cos(30)sin(45)23
Step 3.2.2.1.1.6
The exact value of cos(30) is √32.
sin(A)=1412⋅√22+√32sin(45)23
Step 3.2.2.1.1.7
The exact value of sin(45) is √22.
sin(A)=1412⋅√22+√32⋅√2223
Step 3.2.2.1.1.8
Simplify 12⋅√22+√32⋅√22.
Step 3.2.2.1.1.8.1
Simplify each term.
Step 3.2.2.1.1.8.1.1
Multiply 12⋅√22.
Step 3.2.2.1.1.8.1.1.1
Multiply 12 by √22.
sin(A)=14√22⋅2+√32⋅√2223
Step 3.2.2.1.1.8.1.1.2
Multiply 2 by 2.
sin(A)=14√24+√32⋅√2223
sin(A)=14√24+√32⋅√2223
Step 3.2.2.1.1.8.1.2
Multiply √32⋅√22.
Step 3.2.2.1.1.8.1.2.1
Multiply √32 by √22.
sin(A)=14√24+√3√22⋅223
Step 3.2.2.1.1.8.1.2.2
Combine using the product rule for radicals.
sin(A)=14√24+√3⋅22⋅223
Step 3.2.2.1.1.8.1.2.3
Multiply 3 by 2.
sin(A)=14√24+√62⋅223
Step 3.2.2.1.1.8.1.2.4
Multiply 2 by 2.
sin(A)=14√24+√6423
sin(A)=14√24+√6423
sin(A)=14√24+√6423
Step 3.2.2.1.1.8.2
Combine the numerators over the common denominator.
sin(A)=14√2+√6423
sin(A)=14√2+√6423
sin(A)=14√2+√6423
Step 3.2.2.1.2
Multiply the numerator by the reciprocal of the denominator.
sin(A)=14(√2+√64⋅123)
Step 3.2.2.1.3
Multiply √2+√64⋅123.
Step 3.2.2.1.3.1
Multiply √2+√64 by 123.
sin(A)=14√2+√64⋅23
Step 3.2.2.1.3.2
Multiply 4 by 23.
sin(A)=14√2+√692
sin(A)=14√2+√692
Step 3.2.2.1.4
Cancel the common factor of 2.
Step 3.2.2.1.4.1
Factor 2 out of 14.
sin(A)=2(7)√2+√692
Step 3.2.2.1.4.2
Factor 2 out of 92.
sin(A)=2⋅7√2+√62⋅46
Step 3.2.2.1.4.3
Cancel the common factor.
sin(A)=2⋅7√2+√62⋅46
Step 3.2.2.1.4.4
Rewrite the expression.
sin(A)=7√2+√646
sin(A)=7√2+√646
Step 3.2.2.1.5
Combine 7 and √2+√646.
sin(A)=7(√2+√6)46
sin(A)=7(√2+√6)46
sin(A)=7(√2+√6)46
sin(A)=7(√2+√6)46
Step 3.3
Take the inverse sine of both sides of the equation to extract A from inside the sine.
A=arcsin(7(√2+√6)46)
Step 3.4
Simplify the right side.
Step 3.4.1
Evaluate arcsin(7(√2+√6)46).
A=36.01201213
A=36.01201213
Step 3.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from 180 to find the solution in the second quadrant.
A=180-36.01201213
Step 3.6
Subtract 36.01201213 from 180.
A=143.98798786
Step 3.7
The solution to the equation A=36.01201213.
A=36.01201213,143.98798786
Step 3.8
Exclude the invalid angle.
A=36.01201213
A=36.01201213
Step 4
The sum of all the angles in a triangle is 180 degrees.
36.01201213+C+105=180
Step 5
Step 5.1
Add 36.01201213 and 105.
C+141.01201213=180
Step 5.2
Move all terms not containing C to the right side of the equation.
Step 5.2.1
Subtract 141.01201213 from both sides of the equation.
C=180-141.01201213
Step 5.2.2
Subtract 141.01201213 from 180.
C=38.98798786
C=38.98798786
C=38.98798786
Step 6
The law of sines is based on the proportionality of sides and angles in triangles. The law states that for the angles of a non-right triangle, each angle of the triangle has the same ratio of angle measure to sine value.
sin(A)a=sin(B)b=sin(C)c
Step 7
Substitute the known values into the law of sines to find c.
sin(38.98798786)c=sin(36.01201213)14
Step 8
Step 8.1
Factor each term.
Step 8.1.1
Evaluate sin(38.98798786).
0.62915744c=sin(36.01201213)14
Step 8.1.2
Evaluate sin(36.01201213).
0.62915744c=0.5879548514
Step 8.1.3
Divide 0.58795485 by 14.
0.62915744c=0.04199677
0.62915744c=0.04199677
Step 8.2
Find the LCD of the terms in the equation.
Step 8.2.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
c,1
Step 8.2.2
The LCM of one and any expression is the expression.
c
c
Step 8.3
Multiply each term in 0.62915744c=0.04199677 by c to eliminate the fractions.
Step 8.3.1
Multiply each term in 0.62915744c=0.04199677 by c.
0.62915744cc=0.04199677c
Step 8.3.2
Simplify the left side.
Step 8.3.2.1
Cancel the common factor of c.
Step 8.3.2.1.1
Cancel the common factor.
0.62915744cc=0.04199677c
Step 8.3.2.1.2
Rewrite the expression.
0.62915744=0.04199677c
0.62915744=0.04199677c
0.62915744=0.04199677c
0.62915744=0.04199677c
Step 8.4
Solve the equation.
Step 8.4.1
Rewrite the equation as 0.04199677c=0.62915744.
0.04199677c=0.62915744
Step 8.4.2
Divide each term in 0.04199677c=0.62915744 by 0.04199677 and simplify.
Step 8.4.2.1
Divide each term in 0.04199677c=0.62915744 by 0.04199677.
0.04199677c0.04199677=0.629157440.04199677
Step 8.4.2.2
Simplify the left side.
Step 8.4.2.2.1
Cancel the common factor of 0.04199677.
Step 8.4.2.2.1.1
Cancel the common factor.
0.04199677c0.04199677=0.629157440.04199677
Step 8.4.2.2.1.2
Divide c by 1.
c=0.629157440.04199677
c=0.629157440.04199677
c=0.629157440.04199677
Step 8.4.2.3
Simplify the right side.
Step 8.4.2.3.1
Divide 0.62915744 by 0.04199677.
c=14.98108954
c=14.98108954
c=14.98108954
c=14.98108954
c=14.98108954
Step 9
These are the results for all angles and sides for the given triangle.
A=36.01201213
B=105
C=38.98798786
a=14
b=23
c=14.98108954