Enter a problem...
Trigonometry Examples
SideAngleb=15c=39a=36A=B=C=SideAngleb=15c=39a=36A=B=C=
Step 1
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
a2=b2+c2-2bccos(A)a2=b2+c2−2bccos(A)
Step 2
Solve the equation.
A=arccos(b2+c2-a22bc)A=arccos(b2+c2−a22bc)
Step 3
Substitute the known values into the equation.
A=arccos((15)2+(39)2-(36)22(15)(39))A=arccos((15)2+(39)2−(36)22(15)(39))
Step 4
Step 4.1
Simplify the numerator.
Step 4.1.1
Raise 1515 to the power of 22.
A=arccos(225+392-3622(15)⋅39)A=arccos(225+392−3622(15)⋅39)
Step 4.1.2
Raise 3939 to the power of 22.
A=arccos(225+1521-3622(15)⋅39)A=arccos(225+1521−3622(15)⋅39)
Step 4.1.3
Raise 3636 to the power of 22.
A=arccos(225+1521-1⋅12962(15)⋅39)A=arccos(225+1521−1⋅12962(15)⋅39)
Step 4.1.4
Multiply -1−1 by 12961296.
A=arccos(225+1521-12962(15)⋅39)A=arccos(225+1521−12962(15)⋅39)
Step 4.1.5
Add 225225 and 15211521.
A=arccos(1746-12962(15)⋅39)A=arccos(1746−12962(15)⋅39)
Step 4.1.6
Subtract 12961296 from 17461746.
A=arccos(4502(15)⋅39)A=arccos(4502(15)⋅39)
A=arccos(4502(15)⋅39)A=arccos(4502(15)⋅39)
Step 4.2
Simplify the denominator.
Step 4.2.1
Multiply 22 by 1515.
A=arccos(45030⋅39)A=arccos(45030⋅39)
Step 4.2.2
Multiply 3030 by 3939.
A=arccos(4501170)A=arccos(4501170)
A=arccos(4501170)A=arccos(4501170)
Step 4.3
Cancel the common factor of 450450 and 11701170.
Step 4.3.1
Factor 9090 out of 450450.
A=arccos(90(5)1170)A=arccos(90(5)1170)
Step 4.3.2
Cancel the common factors.
Step 4.3.2.1
Factor 9090 out of 11701170.
A=arccos(90⋅590⋅13)A=arccos(90⋅590⋅13)
Step 4.3.2.2
Cancel the common factor.
A=arccos(90⋅590⋅13)
Step 4.3.2.3
Rewrite the expression.
A=arccos(513)
A=arccos(513)
A=arccos(513)
Step 4.4
Evaluate arccos(513).
A=67.38013505
A=67.38013505
Step 5
Use the law of cosines to find the unknown side of the triangle, given the other two sides and the included angle.
b2=a2+c2-2accos(B)
Step 6
Solve the equation.
B=arccos(a2+c2-b22ac)
Step 7
Substitute the known values into the equation.
B=arccos((36)2+(39)2-(15)22(36)(39))
Step 8
Step 8.1
Simplify the numerator.
Step 8.1.1
Raise 36 to the power of 2.
B=arccos(1296+392-1522(36)⋅39)
Step 8.1.2
Raise 39 to the power of 2.
B=arccos(1296+1521-1522(36)⋅39)
Step 8.1.3
Raise 15 to the power of 2.
B=arccos(1296+1521-1⋅2252(36)⋅39)
Step 8.1.4
Multiply -1 by 225.
B=arccos(1296+1521-2252(36)⋅39)
Step 8.1.5
Add 1296 and 1521.
B=arccos(2817-2252(36)⋅39)
Step 8.1.6
Subtract 225 from 2817.
B=arccos(25922(36)⋅39)
B=arccos(25922(36)⋅39)
Step 8.2
Simplify the denominator.
Step 8.2.1
Multiply 2 by 36.
B=arccos(259272⋅39)
Step 8.2.2
Multiply 72 by 39.
B=arccos(25922808)
B=arccos(25922808)
Step 8.3
Cancel the common factor of 2592 and 2808.
Step 8.3.1
Factor 216 out of 2592.
B=arccos(216(12)2808)
Step 8.3.2
Cancel the common factors.
Step 8.3.2.1
Factor 216 out of 2808.
B=arccos(216⋅12216⋅13)
Step 8.3.2.2
Cancel the common factor.
B=arccos(216⋅12216⋅13)
Step 8.3.2.3
Rewrite the expression.
B=arccos(1213)
B=arccos(1213)
B=arccos(1213)
Step 8.4
Evaluate arccos(1213).
B=22.61986494
B=22.61986494
Step 9
The sum of all the angles in a triangle is 180 degrees.
67.38013505+C+22.61986494=180
Step 10
Step 10.1
Add 67.38013505 and 22.61986494.
C+90=180
Step 10.2
Move all terms not containing C to the right side of the equation.
Step 10.2.1
Subtract 90 from both sides of the equation.
C=180-90
Step 10.2.2
Subtract 90 from 180.
C=90
C=90
C=90
Step 11
These are the results for all angles and sides for the given triangle.
A=67.38013505
B=22.61986494
C=90
a=36
b=15
c=39