Trigonometry Examples

Solve the Triangle tri{5.6}{}{10.6}{}{}{}
SideAngleb=5.6c=10.6a=A=B=C=
Step 1
Assume that angle C=90.
C=90
Step 2
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for a.
a=c2-b2
Step 2.3
Substitute the actual values into the equation.
a=(10.6)2-(5.6)2
Step 2.4
Raise 10.6 to the power of 2.
a=112.36-(5.6)2
Step 2.5
Raise 5.6 to the power of 2.
a=112.36-131.36
Step 2.6
Multiply -1 by 31.36.
a=112.36-31.36
Step 2.7
Subtract 31.36 from 112.36.
a=81
Step 2.8
Rewrite 81 as 92.
a=92
Step 2.9
Pull terms out from under the radical, assuming positive real numbers.
a=9
a=9
Step 3
Find B.
Tap for more steps...
Step 3.1
The angle B can be found using the inverse sine function.
B=arcsin(opphyp)
Step 3.2
Substitute in the values of the opposite side to angle B and hypotenuse 10.6 of the triangle.
B=arcsin(5.610.6)
Step 3.3
Divide 5.6 by 10.6.
B=arcsin(0.52830188)
Step 3.4
Evaluate arcsin(0.52830188).
B=31.8907918
B=31.8907918
Step 4
Find the last angle of the triangle.
Tap for more steps...
Step 4.1
The sum of all the angles in a triangle is 180 degrees.
A+90+31.8907918=180
Step 4.2
Solve the equation for A.
Tap for more steps...
Step 4.2.1
Add 90 and 31.8907918.
A+121.8907918=180
Step 4.2.2
Move all terms not containing A to the right side of the equation.
Tap for more steps...
Step 4.2.2.1
Subtract 121.8907918 from both sides of the equation.
A=180-121.8907918
Step 4.2.2.2
Subtract 121.8907918 from 180.
A=58.10920819
A=58.10920819
A=58.10920819
A=58.10920819
Step 5
These are the results for all angles and sides for the given triangle.
A=58.10920819
B=31.8907918
C=90
a=9
b=5.6
c=10.6
 [x2  12  π  xdx ]