Enter a problem...
Trigonometry Examples
SideAngleb=c=15a=9A=B=C=90SideAngleb=c=15a=9A=B=C=90
Step 1
Step 1.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 1.2
Solve the equation for bb.
b=√c2-a2b=√c2−a2
Step 1.3
Substitute the actual values into the equation.
b=√(15)2-(9)2b=√(15)2−(9)2
Step 1.4
Raise 1515 to the power of 22.
b=√225-(9)2b=√225−(9)2
Step 1.5
Raise 99 to the power of 22.
b=√225-1⋅81b=√225−1⋅81
Step 1.6
Multiply -1−1 by 8181.
b=√225-81b=√225−81
Step 1.7
Subtract 8181 from 225225.
b=√144b=√144
Step 1.8
Rewrite 144144 as 122122.
b=√122b=√122
Step 1.9
Pull terms out from under the radical, assuming positive real numbers.
b=12b=12
b=12b=12
Step 2
Step 2.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 2.2
Substitute in the values of the opposite side to angle BB and hypotenuse 1515 of the triangle.
B=arcsin(1215)B=arcsin(1215)
Step 2.3
Cancel the common factor of 1212 and 1515.
Step 2.3.1
Factor 33 out of 1212.
B=arcsin(3(4)15)B=arcsin(3(4)15)
Step 2.3.2
Cancel the common factors.
Step 2.3.2.1
Factor 33 out of 1515.
B=arcsin(3⋅43⋅5)B=arcsin(3⋅43⋅5)
Step 2.3.2.2
Cancel the common factor.
B=arcsin(3⋅43⋅5)
Step 2.3.2.3
Rewrite the expression.
B=arcsin(45)
B=arcsin(45)
B=arcsin(45)
Step 2.4
Evaluate arcsin(45).
B=53.13010235
B=53.13010235
Step 3
Step 3.1
The sum of all the angles in a triangle is 180 degrees.
A+90+53.13010235=180
Step 3.2
Solve the equation for A.
Step 3.2.1
Add 90 and 53.13010235.
A+143.13010235=180
Step 3.2.2
Move all terms not containing A to the right side of the equation.
Step 3.2.2.1
Subtract 143.13010235 from both sides of the equation.
A=180-143.13010235
Step 3.2.2.2
Subtract 143.13010235 from 180.
A=36.86989764
A=36.86989764
A=36.86989764
A=36.86989764
Step 4
These are the results for all angles and sides for the given triangle.
A=36.86989764
B=53.13010235
C=90
a=9
b=12
c=15