Trigonometry Examples

Solve the Triangle tri{}{}{15}{}{9}{90}
SideAngleb=c=15a=9A=B=C=90SideAngleb=c=15a=9A=B=C=90
Step 1
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 1.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 1.2
Solve the equation for bb.
b=c2-a2b=c2a2
Step 1.3
Substitute the actual values into the equation.
b=(15)2-(9)2b=(15)2(9)2
Step 1.4
Raise 1515 to the power of 22.
b=225-(9)2b=225(9)2
Step 1.5
Raise 99 to the power of 22.
b=225-181b=225181
Step 1.6
Multiply -11 by 8181.
b=225-81b=22581
Step 1.7
Subtract 8181 from 225225.
b=144b=144
Step 1.8
Rewrite 144144 as 122122.
b=122b=122
Step 1.9
Pull terms out from under the radical, assuming positive real numbers.
b=12b=12
b=12b=12
Step 2
Find BB.
Tap for more steps...
Step 2.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 2.2
Substitute in the values of the opposite side to angle BB and hypotenuse 1515 of the triangle.
B=arcsin(1215)B=arcsin(1215)
Step 2.3
Cancel the common factor of 1212 and 1515.
Tap for more steps...
Step 2.3.1
Factor 33 out of 1212.
B=arcsin(3(4)15)B=arcsin(3(4)15)
Step 2.3.2
Cancel the common factors.
Tap for more steps...
Step 2.3.2.1
Factor 33 out of 1515.
B=arcsin(3435)B=arcsin(3435)
Step 2.3.2.2
Cancel the common factor.
B=arcsin(3435)
Step 2.3.2.3
Rewrite the expression.
B=arcsin(45)
B=arcsin(45)
B=arcsin(45)
Step 2.4
Evaluate arcsin(45).
B=53.13010235
B=53.13010235
Step 3
Find the last angle of the triangle.
Tap for more steps...
Step 3.1
The sum of all the angles in a triangle is 180 degrees.
A+90+53.13010235=180
Step 3.2
Solve the equation for A.
Tap for more steps...
Step 3.2.1
Add 90 and 53.13010235.
A+143.13010235=180
Step 3.2.2
Move all terms not containing A to the right side of the equation.
Tap for more steps...
Step 3.2.2.1
Subtract 143.13010235 from both sides of the equation.
A=180-143.13010235
Step 3.2.2.2
Subtract 143.13010235 from 180.
A=36.86989764
A=36.86989764
A=36.86989764
A=36.86989764
Step 4
These are the results for all angles and sides for the given triangle.
A=36.86989764
B=53.13010235
C=90
a=9
b=12
c=15
 [x2  12  π  xdx ]