Trigonometry Examples

Solve the Triangle tri{}{}{27}{54}{}{90}
SideAngleb=c=27a=A=B=54C=90SideAngleb=c=27a=A=B=54C=90
Step 1
Find the last angle of the triangle.
Tap for more steps...
Step 1.1
The sum of all the angles in a triangle is 180180 degrees.
A+90+54=180A+90+54=180
Step 1.2
Solve the equation for AA.
Tap for more steps...
Step 1.2.1
Add 9090 and 5454.
A+144=180A+144=180
Step 1.2.2
Move all terms not containing AA to the right side of the equation.
Tap for more steps...
Step 1.2.2.1
Subtract 144144 from both sides of the equation.
A=180-144A=180144
Step 1.2.2.2
Subtract 144144 from 180180.
A=36A=36
A=36A=36
A=36A=36
A=36A=36
Step 2
Find bb.
Tap for more steps...
Step 2.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(A)=adjhypcos(A)=adjhyp
Step 2.2
Substitute the name of each side into the definition of the cosine function.
cos(A)=bccos(A)=bc
Step 2.3
Set up the equation to solve for the adjacent side, in this case bb.
b=ccos(A)b=ccos(A)
Step 2.4
Substitute the values of each variable into the formula for cosine.
b=27cos(36)b=27cos(36)
Step 2.5
Multiply 2727 by 0.809016990.80901699.
b=21.84345884b=21.84345884
b=21.84345884b=21.84345884
Step 3
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 3.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 3.2
Solve the equation for aa.
a=c2-b2a=c2b2
Step 3.3
Substitute the actual values into the equation.
a=(27)2-(21.84345884)2a=(27)2(21.84345884)2
Step 3.4
Raise 2727 to the power of 22.
a=729-(21.84345884)2a=729(21.84345884)2
Step 3.5
Raise 21.8434588421.84345884 to the power of 22.
a=729-1477.13669444a=7291477.13669444
Step 3.6
Multiply -11 by 477.13669444477.13669444.
a=729-477.13669444a=729477.13669444
Step 3.7
Subtract 477.13669444477.13669444 from 729729.
a=251.86330555a=251.86330555
a=251.86330555a=251.86330555
Step 4
Convert 251.86330555251.86330555 to a decimal.
a=15.87020181a=15.87020181
Step 5
These are the results for all angles and sides for the given triangle.
A=36A=36
B=54B=54
C=90C=90
a=15.87020181a=15.87020181
b=21.84345884b=21.84345884
c=27c=27
 [x2  12  π  xdx ]  x2  12  π  xdx