Enter a problem...
Trigonometry Examples
SideAngleb=c=a=8A=45B=45C=90SideAngleb=c=a=8A=45B=45C=90
Step 1
Step 1.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(B)=adjhypcos(B)=adjhyp
Step 1.2
Substitute the name of each side into the definition of the cosine function.
cos(B)=accos(B)=ac
Step 1.3
Set up the equation to solve for the hypotenuse, in this case cc.
c=acos(B)c=acos(B)
Step 1.4
Substitute the values of each variable into the formula for cosine.
c=8cos(45)c=8cos(45)
Step 1.5
The value of cos(45)cos(45) is √22√22.
c=8√22c=8√22
Step 1.6
Multiply the numerator by the reciprocal of the denominator.
c=8(2√2)c=8(2√2)
Step 1.7
Multiply 2√22√2 by √2√2√2√2.
c=8(2√2⋅√2√2)c=8(2√2⋅√2√2)
Step 1.8
Combine and simplify the denominator.
Step 1.8.1
Multiply 2√22√2 by √2√2√2√2.
c=8(2√2√2√2)c=8(2√2√2√2)
Step 1.8.2
Raise √2√2 to the power of 11.
c=8(2√2√2√2)c=8(2√2√2√2)
Step 1.8.3
Raise √2√2 to the power of 11.
c=8(2√2√2√2)c=8(2√2√2√2)
Step 1.8.4
Use the power rule aman=am+naman=am+n to combine exponents.
c=8(2√2√21+1)c=8(2√2√21+1)
Step 1.8.5
Add 11 and 11.
c=8(2√2√22)c=8(2√2√22)
Step 1.8.6
Rewrite √22√22 as 22.
Step 1.8.6.1
Use n√ax=axnn√ax=axn to rewrite √2√2 as 212212.
c=8(2√2(212)2)c=8⎛⎜
⎜⎝2√2(212)2⎞⎟
⎟⎠
Step 1.8.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
c=8(2√2212⋅2)c=8(2√2212⋅2)
Step 1.8.6.3
Combine 1212 and 22.
c=8(2√2222)c=8(2√2222)
Step 1.8.6.4
Cancel the common factor of 22.
Step 1.8.6.4.1
Cancel the common factor.
c=8(2√2222)
Step 1.8.6.4.2
Rewrite the expression.
c=8(2√22)
c=8(2√22)
Step 1.8.6.5
Evaluate the exponent.
c=8(2√22)
c=8(2√22)
c=8(2√22)
Step 1.9
Cancel the common factor of 2.
Step 1.9.1
Factor 2 out of 8.
c=2(4)(2√22)
Step 1.9.2
Cancel the common factor.
c=2⋅(4(2√22))
Step 1.9.3
Rewrite the expression.
c=4(2√2)
c=4(2√2)
Step 1.10
Multiply 2 by 4.
c=8√2
c=8√2
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for b.
b=√c2-a2
Step 2.3
Substitute the actual values into the equation.
b=√(8√2)2-(8)2
Step 2.4
Simplify the expression.
Step 2.4.1
Apply the product rule to 8√2.
b=√82√22-(8)2
Step 2.4.2
Raise 8 to the power of 2.
b=√64√22-(8)2
b=√64√22-(8)2
Step 2.5
Rewrite √22 as 2.
Step 2.5.1
Use n√ax=axn to rewrite √2 as 212.
b=√64(212)2-(8)2
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
b=√64⋅212⋅2-(8)2
Step 2.5.3
Combine 12 and 2.
b=√64⋅222-(8)2
Step 2.5.4
Cancel the common factor of 2.
Step 2.5.4.1
Cancel the common factor.
b=√64⋅222-(8)2
Step 2.5.4.2
Rewrite the expression.
b=√64⋅2-(8)2
b=√64⋅2-(8)2
Step 2.5.5
Evaluate the exponent.
b=√64⋅2-(8)2
b=√64⋅2-(8)2
Step 2.6
Simplify the expression.
Step 2.6.1
Multiply 64 by 2.
b=√128-(8)2
Step 2.6.2
Raise 8 to the power of 2.
b=√128-1⋅64
Step 2.6.3
Multiply -1 by 64.
b=√128-64
Step 2.6.4
Subtract 64 from 128.
b=√64
Step 2.6.5
Rewrite 64 as 82.
b=√82
Step 2.6.6
Pull terms out from under the radical, assuming positive real numbers.
b=8
b=8
b=8
Step 3
These are the results for all angles and sides for the given triangle.
A=45
B=45
C=90
a=8
b=8
c=8√2