Trigonometry Examples

Solve the Triangle tri{}{45}{}{45}{8}{90}
SideAngleb=c=a=8A=45B=45C=90SideAngleb=c=a=8A=45B=45C=90
Step 1
Find cc.
Tap for more steps...
Step 1.1
The cosine of an angle is equal to the ratio of the adjacent side to the hypotenuse.
cos(B)=adjhypcos(B)=adjhyp
Step 1.2
Substitute the name of each side into the definition of the cosine function.
cos(B)=accos(B)=ac
Step 1.3
Set up the equation to solve for the hypotenuse, in this case cc.
c=acos(B)c=acos(B)
Step 1.4
Substitute the values of each variable into the formula for cosine.
c=8cos(45)c=8cos(45)
Step 1.5
The value of cos(45)cos(45) is 2222.
c=822c=822
Step 1.6
Multiply the numerator by the reciprocal of the denominator.
c=8(22)c=8(22)
Step 1.7
Multiply 2222 by 2222.
c=8(2222)c=8(2222)
Step 1.8
Combine and simplify the denominator.
Tap for more steps...
Step 1.8.1
Multiply 2222 by 2222.
c=8(2222)c=8(2222)
Step 1.8.2
Raise 22 to the power of 11.
c=8(2222)c=8(2222)
Step 1.8.3
Raise 22 to the power of 11.
c=8(2222)c=8(2222)
Step 1.8.4
Use the power rule aman=am+naman=am+n to combine exponents.
c=8(2221+1)c=8(2221+1)
Step 1.8.5
Add 11 and 11.
c=8(2222)c=8(2222)
Step 1.8.6
Rewrite 2222 as 22.
Tap for more steps...
Step 1.8.6.1
Use nax=axnnax=axn to rewrite 22 as 212212.
c=8(22(212)2)c=8⎜ ⎜22(212)2⎟ ⎟
Step 1.8.6.2
Apply the power rule and multiply exponents, (am)n=amn(am)n=amn.
c=8(222122)c=8(222122)
Step 1.8.6.3
Combine 1212 and 22.
c=8(22222)c=8(22222)
Step 1.8.6.4
Cancel the common factor of 22.
Tap for more steps...
Step 1.8.6.4.1
Cancel the common factor.
c=8(22222)
Step 1.8.6.4.2
Rewrite the expression.
c=8(222)
c=8(222)
Step 1.8.6.5
Evaluate the exponent.
c=8(222)
c=8(222)
c=8(222)
Step 1.9
Cancel the common factor of 2.
Tap for more steps...
Step 1.9.1
Factor 2 out of 8.
c=2(4)(222)
Step 1.9.2
Cancel the common factor.
c=2(4(222))
Step 1.9.3
Rewrite the expression.
c=4(22)
c=4(22)
Step 1.10
Multiply 2 by 4.
c=82
c=82
Step 2
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2
Step 2.2
Solve the equation for b.
b=c2-a2
Step 2.3
Substitute the actual values into the equation.
b=(82)2-(8)2
Step 2.4
Simplify the expression.
Tap for more steps...
Step 2.4.1
Apply the product rule to 82.
b=8222-(8)2
Step 2.4.2
Raise 8 to the power of 2.
b=6422-(8)2
b=6422-(8)2
Step 2.5
Rewrite 22 as 2.
Tap for more steps...
Step 2.5.1
Use nax=axn to rewrite 2 as 212.
b=64(212)2-(8)2
Step 2.5.2
Apply the power rule and multiply exponents, (am)n=amn.
b=642122-(8)2
Step 2.5.3
Combine 12 and 2.
b=64222-(8)2
Step 2.5.4
Cancel the common factor of 2.
Tap for more steps...
Step 2.5.4.1
Cancel the common factor.
b=64222-(8)2
Step 2.5.4.2
Rewrite the expression.
b=642-(8)2
b=642-(8)2
Step 2.5.5
Evaluate the exponent.
b=642-(8)2
b=642-(8)2
Step 2.6
Simplify the expression.
Tap for more steps...
Step 2.6.1
Multiply 64 by 2.
b=128-(8)2
Step 2.6.2
Raise 8 to the power of 2.
b=128-164
Step 2.6.3
Multiply -1 by 64.
b=128-64
Step 2.6.4
Subtract 64 from 128.
b=64
Step 2.6.5
Rewrite 64 as 82.
b=82
Step 2.6.6
Pull terms out from under the radical, assuming positive real numbers.
b=8
b=8
b=8
Step 3
These are the results for all angles and sides for the given triangle.
A=45
B=45
C=90
a=8
b=8
c=82
 [x2  12  π  xdx ]