Trigonometry Examples

Solve the Triangle tri{10}{}{}{}{10}{}
SideAngleb=10c=a=10A=B=C=SideAngleb=10c=a=10A=B=C=
Step 1
Assume that angle C=90C=90.
C=90C=90
Step 2
Find the last side of the triangle using the Pythagorean theorem.
Tap for more steps...
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 2.2
Solve the equation for cc.
c=b2+a2c=b2+a2
Step 2.3
Substitute the actual values into the equation.
c=(10)2+(10)2c=(10)2+(10)2
Step 2.4
Raise 1010 to the power of 22.
c=100+(10)2c=100+(10)2
Step 2.5
Raise 1010 to the power of 22.
c=100+100c=100+100
Step 2.6
Add 100100 and 100100.
c=200c=200
Step 2.7
Rewrite 200200 as 10221022.
Tap for more steps...
Step 2.7.1
Factor 100100 out of 200200.
c=100(2)c=100(2)
Step 2.7.2
Rewrite 100100 as 102102.
c=1022c=1022
c=1022c=1022
Step 2.8
Pull terms out from under the radical.
c=102c=102
c=102c=102
Step 3
Find BB.
Tap for more steps...
Step 3.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 3.2
Substitute in the values of the opposite side to angle BB and hypotenuse 102102 of the triangle.
B=arcsin(10102)B=arcsin(10102)
Step 3.3
Cancel the common factor of 1010.
Tap for more steps...
Step 3.3.1
Cancel the common factor.
B=arcsin(10102)
Step 3.3.2
Rewrite the expression.
B=arcsin(12)
B=arcsin(12)
Step 3.4
Multiply 12 by 22.
B=arcsin(1222)
Step 3.5
Combine and simplify the denominator.
Tap for more steps...
Step 3.5.1
Multiply 12 by 22.
B=arcsin(222)
Step 3.5.2
Raise 2 to the power of 1.
B=arcsin(222)
Step 3.5.3
Raise 2 to the power of 1.
B=arcsin(222)
Step 3.5.4
Use the power rule aman=am+n to combine exponents.
B=arcsin(221+1)
Step 3.5.5
Add 1 and 1.
B=arcsin(222)
Step 3.5.6
Rewrite 22 as 2.
Tap for more steps...
Step 3.5.6.1
Use nax=axn to rewrite 2 as 212.
B=arcsin(2(212)2)
Step 3.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
B=arcsin(22122)
Step 3.5.6.3
Combine 12 and 2.
B=arcsin(2222)
Step 3.5.6.4
Cancel the common factor of 2.
Tap for more steps...
Step 3.5.6.4.1
Cancel the common factor.
B=arcsin(2222)
Step 3.5.6.4.2
Rewrite the expression.
B=arcsin(22)
B=arcsin(22)
Step 3.5.6.5
Evaluate the exponent.
B=arcsin(22)
B=arcsin(22)
B=arcsin(22)
Step 3.6
The exact value of arcsin(22) is 45.
B=45
B=45
Step 4
Find the last angle of the triangle.
Tap for more steps...
Step 4.1
The sum of all the angles in a triangle is 180 degrees.
A+90+45=180
Step 4.2
Solve the equation for A.
Tap for more steps...
Step 4.2.1
Add 90 and 45.
A+135=180
Step 4.2.2
Move all terms not containing A to the right side of the equation.
Tap for more steps...
Step 4.2.2.1
Subtract 135 from both sides of the equation.
A=180-135
Step 4.2.2.2
Subtract 135 from 180.
A=45
A=45
A=45
A=45
Step 5
These are the results for all angles and sides for the given triangle.
A=45
B=45
C=90
a=10
b=10
c=102
 [x2  12  π  xdx ]