Enter a problem...
Trigonometry Examples
SideAngleb=10c=a=10A=B=C=SideAngleb=10c=a=10A=B=C=
Step 1
Assume that angle C=90C=90.
C=90C=90
Step 2
Step 2.1
Use the Pythagorean theorem to find the unknown side. In any right triangle, the area of the square whose side is the hypotenuse (the side of a right triangle opposite the right angle) is equal to the sum of areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).
a2+b2=c2a2+b2=c2
Step 2.2
Solve the equation for cc.
c=√b2+a2c=√b2+a2
Step 2.3
Substitute the actual values into the equation.
c=√(10)2+(10)2c=√(10)2+(10)2
Step 2.4
Raise 1010 to the power of 22.
c=√100+(10)2c=√100+(10)2
Step 2.5
Raise 1010 to the power of 22.
c=√100+100c=√100+100
Step 2.6
Add 100100 and 100100.
c=√200c=√200
Step 2.7
Rewrite 200200 as 102⋅2102⋅2.
Step 2.7.1
Factor 100100 out of 200200.
c=√100(2)c=√100(2)
Step 2.7.2
Rewrite 100100 as 102102.
c=√102⋅2c=√102⋅2
c=√102⋅2c=√102⋅2
Step 2.8
Pull terms out from under the radical.
c=10√2c=10√2
c=10√2c=10√2
Step 3
Step 3.1
The angle BB can be found using the inverse sine function.
B=arcsin(opphyp)B=arcsin(opphyp)
Step 3.2
Substitute in the values of the opposite side to angle BB and hypotenuse 10√210√2 of the triangle.
B=arcsin(1010√2)B=arcsin(1010√2)
Step 3.3
Cancel the common factor of 1010.
Step 3.3.1
Cancel the common factor.
B=arcsin(1010√2)
Step 3.3.2
Rewrite the expression.
B=arcsin(1√2)
B=arcsin(1√2)
Step 3.4
Multiply 1√2 by √2√2.
B=arcsin(1√2⋅√2√2)
Step 3.5
Combine and simplify the denominator.
Step 3.5.1
Multiply 1√2 by √2√2.
B=arcsin(√2√2√2)
Step 3.5.2
Raise √2 to the power of 1.
B=arcsin(√2√2√2)
Step 3.5.3
Raise √2 to the power of 1.
B=arcsin(√2√2√2)
Step 3.5.4
Use the power rule aman=am+n to combine exponents.
B=arcsin(√2√21+1)
Step 3.5.5
Add 1 and 1.
B=arcsin(√2√22)
Step 3.5.6
Rewrite √22 as 2.
Step 3.5.6.1
Use n√ax=axn to rewrite √2 as 212.
B=arcsin(√2(212)2)
Step 3.5.6.2
Apply the power rule and multiply exponents, (am)n=amn.
B=arcsin(√2212⋅2)
Step 3.5.6.3
Combine 12 and 2.
B=arcsin(√2222)
Step 3.5.6.4
Cancel the common factor of 2.
Step 3.5.6.4.1
Cancel the common factor.
B=arcsin(√2222)
Step 3.5.6.4.2
Rewrite the expression.
B=arcsin(√22)
B=arcsin(√22)
Step 3.5.6.5
Evaluate the exponent.
B=arcsin(√22)
B=arcsin(√22)
B=arcsin(√22)
Step 3.6
The exact value of arcsin(√22) is 45.
B=45
B=45
Step 4
Step 4.1
The sum of all the angles in a triangle is 180 degrees.
A+90+45=180
Step 4.2
Solve the equation for A.
Step 4.2.1
Add 90 and 45.
A+135=180
Step 4.2.2
Move all terms not containing A to the right side of the equation.
Step 4.2.2.1
Subtract 135 from both sides of the equation.
A=180-135
Step 4.2.2.2
Subtract 135 from 180.
A=45
A=45
A=45
A=45
Step 5
These are the results for all angles and sides for the given triangle.
A=45
B=45
C=90
a=10
b=10
c=10√2